Реферат: Проводниковые материалы
В качестве проводников электрического тока могут быть использованы как твердые тела, так и жидкости, а при соответствующих условиях и газы. Важнейшими практически применяемыми в электротехнике твердыми проводниковыми материалами являются металлы и их сплавы.
Из металлических проводниковых материалов могут быть выделены металлы высокой проводимости, имеющие удельное сопротивление r при нормальной температуре не более 0,05 мкОм×м, и сплавы высокого сопротивления, имеющие r при нормальной температуре не менее 0,3 мкОм×м. Металлы высокой проводимости используются для проводов, токопроводящих жил кабелей, обмоток электрических машин и трансформаторов и т. п. Металлы и сплавы высокого сопротивления применяются для изготовления резисторов, электронагревательных приборов, нитей ламп накаливания и т. п.
К жидким проводникам относятся расплавленные металлы и различные электролиты. Для большинства металлов температура плавления высока; только ртуть, имеющая температуру плавления около минус 39°С, может быть использована в качестве жидкого металлического проводника при нормальной температуре. Другие металлы являются жидкими проводниками при повышенных температурах.
Механизм прохождения тока в металлах — как в твердом, так и в жидком состоянии — обусловлен движением (дрейфом) свободных электронов под воздействием электрического поля; поэтому металлы называют проводниками с электронной электропроводностью или проводниками первого рода. Проводниками второго рода, или электролитами, являются растворы (в частности, водные) кислот, щелочей и солей. Прохождение тока через эти вещества связано с переносом вместе с электрическими зарядами ионов в соответствии с законами Фарадея, вследствие чего состав электролита постепенно изменяется, а на электродах выделяются продукты электролиза. Ионные кристаллы в расплавленном состоянии также являются проводниками второго рода.
Все газы и пары, в том числе и пары металлов, при низких напряженностях электрического поля не являются проводниками. Однако, если напряженность поля превзойдет некоторое критическое значение, обеспечивающее начало ударной и фотоионизации, то газ может стать проводником с электронной и ионной электропроводностью. Сильно ионизированный газ при равенстве числа электронов числу положительных ионов в единице объема представляет собой особую проводящую среду, носящую название плазмы.
1. Электропроводность металлов.
Классическая электронная теория металлов представляет твердый проводник в виде системы, состоящей из узлов кристаллической ионной решетки, внутри которой находится электронный газ из коллективизированных (свободных) электронов. В свободное состояние от каждого атома металла переходит от одного до двух электронов. К электронному газу применялись представления и законы статистики обычных газов. При изучении хаотического (теплового) и направленного под действием силы электрического поля движения электронов был выведен закон Ома. При столкновениях электронов с узлами кристаллической решетки энергия, накопленная при ускорении электронов в электрическом поле, передается металлической основе проводчика, вследствие чего он нагревается. Рассмотрение этого вопроса привело к выводу закона Джоуля—Ленца. Таким образом, электронная теория металлов дала возможность аналитически описать и объяснить найденные ранее экспериментальным путем основные законы электропроводности и потерь электрической энергии в металлах. Оказалось возможным также объяснить и связь между электропроводностью и теплопроводностью металлов. Кроме того, некоторые опыты подтвердили гипотезу об электронном газе в металлах, а именно:
1. При длительном пропускании электрического тока через цепь, состоящую из одних металлических проводников, не наблюдается проникновения атомов одного металла в другой.
2. При нагреве металлов до высоких температур скорость теплового движения свободных электронов увеличивается, и наиболее быстрые из них могут вылетать из металла, преодолевая силы поверхностного потенциального барьера.
3. В момент неожиданной остановки быстро двигавшегося проводника происходит смещение электронного газа по закону инерции в направлении движения. Смещение электронов приводит к появлению разности потенциалов на концах заторможенного проводника, и стрелка подключаемого к ним измерительного прибора отклоняется по шкале.
4. Исследуя поведение металлических проводников в магнитном поле, установили, что вследствие искривления траектории электронов в металлической пластинке, помещенной в поперечное магнитное поле, появляется поперечная ЭДС и изменяется электрическое сопротивление проводника.
Однако выявились и противоречия некоторых выводов теории с опытными данными. Они состояли в расхождении температурной зависимости удельного сопротивления, наблюдаемой на опыте и вытекающей из положений теории; в несоответствии теоретически полученных значений теплоемкости металлов опытным данным. Наблюдаемая теплоемкость металлов меньше теоретической и такова, как будто электронный газ не поглощает теплоту при нагреве металлического проводника. Эти противоречия удалось преодолеть, рассматривая некоторые положения с позиций квантовой механики. В отличие от классической электронной теории в квантовой механике принимается, что электронный газ в металлах при обычных температурах находится в состоянии вырождения. В этом состоянии энергия электронного газа почти не зависит от температуры, т. е. тепловое движение почти не изменяет энергию электронов. Поэтому на нагрев электронного газа теплота не затрачивается, что и обнаруживается при измерении теплоемкости металлов. В состояние, аналогичное обычным газам, электронный газ приходит при температуре порядка тысяч Кельвинов. Представляя металл как систему, в которой положительные ионы скрепляются посредством свободно движущихся электронов, легко понять природу всех основных свойств металлов: пластичности, ковкости, хорошей теплопроводности и высокой электропроводности.
2. Свойства проводников.
К важнейшим параметрам, характеризующим свойства проводниковых материалов, относятся:
1) удельная проводимость g или обратная ей величина — удельное сопротивление r,
2) температурный коэффициент удельного сопротивления ТКr или ar ,
3) коэффициент теплопроводности gт ,
4) контактная разность потенциалов и термоэлектродвижущая сила (термо-ЭДС),
5) работа выхода электронов из металла,
6) предел прочности при растяжении sр и относительное удлинение перед разрывом Dl/l .
Удельная проводимость и удельное сопротивление проводников. Связь плотности тока J (в амперах на квадратный метр) и напряженности электрического поля (в вольтах на метр) в проводнике дается известной формулой:
J= gE |
(2-1) |
(дифференциальная форма закона Ома); здесь g (в сименсах на метр) параметр проводникового материала, называемый его удельной проводимостью: в соответствии с законом Ома у металлических проводников не зависит от напряженности электрического поля Е при изменении последней в весьма широких пределах. Величина r = 1/g, обратная удельной проводимости и называемая удельным сопротивлением, для имеющего сопротивление R проводника длиной l с постоянным поперечным сечением S вычисляется по формуле
r = RS/l |
(2-2) |
Удельное сопротивление измеряется в ом-метрах. Для измерения r проводниковых материалов разрешается пользоваться внесистемной единицей Ом×мм2 /м; очевидно, что проволока из материала длиной 1 м с поперечным сечением 1 мм2 имеет сопротивление в омах, численно равно r материала в Ом×мм2 /м.
Диапазон значений удельного сопротивления r металлических проводников (при нормальной температуре) довольно узок: от 0,016 для серебра и до примерно 10 мкОм×м для железохромоалюминиевых сплавов, т.е. он занимает всего три порядка. Удельная проводимость металлических проводников согласно классической теории металлов может быть выражена следующим образом:
g = (e2 n0 l)/(2mvT ) |
(2-3) |
где е — заряд электрона; n0 — число свободных электронов в единице объема металла; l — средняя длина свободного пробега электрона между двумя соударениями с узлами решетки; т — масса электрона; vT — средняя скорость теплового движения свободного электрона в металле.
--> ЧИТАТЬ ПОЛНОСТЬЮ <--