Реферат: Пузыри в жидкости
.
Пузырек прекратит всплывание при F = 0, т. е. при
А происходит это именно на границе при условии, что . Из этого условия (при ) следует, что задержаться на границе могут пузырьки, радиус которых меньше некоторого критического :
.
Формулу, следующую из нашего расчета, можно получить, пользуясь лишь соображениями о размерностях.
Итак, формула есгь, обсудим ее.
При может оказаться, что .
В этом случае R * < 0 и граница должна быть проницаема для пузырьков любого размера. Если же , то всегда R* > О, Скажем, для металлов Дж/м2 , Дж/м2 и, таким образом, м. Это означает, что на границе застрянут миллиметровые и более мелкие пузырьки.
Но элементарный расчет может иметь отношение к действительности лишь в случае, если подход пузырька к границе снизу сопровождается ее прорывом при соприкосновении пузырька с жидкостью верхнего слоя. Такая ситуация вполне реальна. Во многих же случаях действительность оказывается сложнее нашей упрощенной схемы и преодоление пузырьком границы происходит совсем не так, как мы это предполагали в нашем расчете. Обсудим и иной механизм преодоления границы пузырьком.
Вначале о результатах совсем простых опытов. В сосуде расположены два слоя несмешивающихся жидкостей. В объем нижней жидкости вдуваются газовые пузырьки, и они, двигаясь вверх, проходят через границу между жидкостями.
В каждом из слоев пузырьки просто всплывают. А вот когда на пути пузырька оказывается граница между слоями жидкостей, возникают неожиданные явления, отличающиеся от обсужденных ранее. Они нас и интересуют. Возьмем для опыта стеклянный сосуд, нальем в него две несмешивающиеся жидкости (например, вода и подсолнечное масло) и сквозь стекло разглядим все, что происходит на границе между ними. В нижний слой жидкости газовые пузыри выводились через иглу шприца.
Опыты свидетельствуют о том, что явлению, которое мы наблюдали сопутствуют два эффекта. Оказывается, что, если в объем нижней жидкости последовательно вспрыскивать маленькие пузырьки они скапливаются под границей, объединяются и, лишь достигнув определенного размера , так сказать, объединив свои усилия, преодолевают границу и проникают в верхнюю жидкость. Точнее говоря, не «проникают», а «проникает» один укрупненный пузырь. Прежде чем пропустить сквозь себя пузырек, граница между жидкостями под влиянием выталкивающей силы прогибается, как бы тянется за укрупняющимся пузырьком. А затем, пропустив пузырек, она спрямляется, готовясь к сопротивлению новым пузырькам. Если разумеется, они появятся. Итак, принципиально новое наблюдение: граница не прорывается, а прогибается задвижущимся пузырьком.
Рисунок 4 Схема границы, изгибаемой всплывающим пузырьком
Между газом, заключенным в пузырьке, и верхней жидкостью остается прослойка нижней жидкости, как это и изображено на схематическом рисунке (см рис. 4).
Вот теперь попытаемся оценить , сохранив все ранее сделанные упрощения. Будем считать, что границу преодолевает не движущийся пузырек, подобно тому, как, скажем, летящая пуля пробивает доску, а пузырек покоящийся, на который, по мере его укрупнения действует выталкивающая сила . Это означает, что, как и ранее, мы не должны обсуждать ни скорость всплывания пузырьков, ни вязкость граничащих жидкостей, ни какие-либо иные кинетические величины.
Предположим, что плотности граничащих жидкостей практически одинаковы и равны . В рассматриваемой ситуации на пузырек, отделенный от границы между жидкостями тонким слоем нижней жидкости действуют две силы. Одна из них – выталкивающая сила, стремящаяся продавить пузырек сквозь границу. Другая сила возникает, когда всплывающий пузырек деформирует границу между жидкостями. Эта сила стремится воспрепятствовать увеличению площади между жидкостями в том месте, где пузырек стремится ее прорвать. Эту силу вычислим, упростив форму границы. В этом упрощении формы границы в основном и заключается упрощенность расчета.
Силу можно оценить, следуя вот каким рассуждениям. Перемещение газового пузырька вверх сопровождается увеличением площади цилиндрической границы между верхней и нижней жидкостями. Если пузырек сместится на величину , то сопутствующее этому увеличение поверхностной энергии . Это означает, что всплыванию пузырька будет препятствовать сила . Вот теперь из условия , мы легко определим критический размер пузырька, при котором сила оторвет его от столба нижней жидкости. Окутанный ею пузырек всплывает в верхней жидкости. Оценка R* оказывается следующей:
.
Из формулы следует, что при разумных значениях величин, определяющих R* (Дж/м2 , кг/м3 ), оказывается, что м.
Теперь о втором эффекте. Оказывается, что пузырек, прорывающийся через границу в «верхнюю» жидкость, уносит с собой немного «нижней» жидкости, даже если она и тяжелее.
5. Кавитация
Это понятие разъясняется так: образование разрывов сплошности жидкости в результате местного понижения давления в ней. Разрывы жидкости, это конечно же п