Реферат: Работа электрических органов рыб

Посмотрим же, как живет известная всем со школьных времен – с 6-го класса – пресноводная инфузория туфелька и какую роль в ее жизни играют электрические процессы.

Значительная часть тела туфельки покрыта прочным панцирем из правильно расположенных шестиугольников, в котором имеются ряд просветов для рта, места выброса остатков пищи и др. Кроме того, на поверхности тела туфельки находятся около 15 тысяч ресничек – ее органов движения. Наконец, на поверхности находятся органы защиты – трихоцисты, устройства, которые при раздражении выбрасывают наружу длинную нить, выделяющую ядовитое вещество так же как стрекательные клетки крапивы.

Некоторые реснички, расположенные около рта инфузории, служат не для движения, а для того чтобы загонять пищу в рот. У туфельки рот все время открыт, и она непрерывно питается бактериями. У некоторых других хищных инфузорий рот открывается в момент захвата пищи. Пища, попавшая в рот, через глотку проходит в мембранный пузырек, который отрывается от глотки и совершает сложное путешествие внутри тела инфузории. Этот пузырек называют пищеварительной вакуолью. Таких вакуолей в один и тот же момент может быть много: одни только оторвались от глотки, другие прошли часть пути, третьи уже подходят к специальному участку поверхности, где выбрасываются наружу непереваренные остатки пищи. С нашей, человеческой точки зрения, это довольно необычная пищеварительная система: вместо того чтобы пища двигалась по кишечнику, как у всех людей, у инфузории нет никакого аналога кишечника, а сам «желудок» с пищей отправляется в путешествие по телу. Примерно каждые две минуты у туфельки образуется новая пищеварительная вакуоль.

У инфузории есть специальный орган для регуляции содержания воды в теле – выделительная вакуоль. Рассказывая про ионные насосы, мы уже говорили, что у всех пресноводных животных возникает одна и та же проблема: вода за счет осмоса должна поступать внутрь клеток таких организмов и ее излишки необходимо все время удалять. Ту же проблему приходится решать и инфузории. Хотя часть ее тела и защищена плотным покровом, видимо, непроницаемым для воды, но через постоянно открытый рот вода вместе с добычей поступает в организм туфельки. Для выведения лишней воды и служит выделительная вакуоль; такие вакуоли имеются у большинства пресноводных простейших. У туфельки вакуоль состоит из центрального резервуара, подходящих к нему изнутри тела пяти-семи мембранных трубочек и вынодящего канала, который ведет в наружную среду. Удаляемая жидкость собирается в приводящие каналы; в некоторый момент все эти каналы разом сокращаются, растягивая выделительную вакуоль. После этого вакуоль сокращается и выбрасывает жидкость наружу. Вакуоль сокращается примерно один раз в 20 секунд. За 45 минут вакуолью выделяется объем воды, равный всему объему туфельки!

Таким образом, сократительная вакуоль совершает очень большую работу; значительную часть своей энергии туфелька тратит на борьбу с осмосом.

А теперь рассмотрим некоторые электрические явления у инфузории и их связь с ее жизнедеятельностью и поведением. У туфельки существует ГШ; показано, что, как и у других клеток, этот ПП обеспечивается ионами калия. Однако при регистрации этого потенциала оказалось, что он очень неустойчив, У инфузории МП раз в 20 секунд делает очень большой выброс, да и в промежутках сильно колеблется. Оказалось, что эти колебания связаны с разнообразными проявлениями жизнедеятельности туфельки. Когда сократительная вакуоль выбрасывает году и раздувает выводящий канал, она сильно сообщается с наружной средой. Сопротивление мембраны вакуоли ш же, чем других участков тела инфузории, и потенциал на ней тоже ниже, поэтому в момент выброса воды эта вакуоль «закорачивает» остальную мембрану и ПП заметно снижается. То же самое происходит при разрыве пищеварительной вакуоли, когда она сливается с наружной мембраной, а у многих инфузорий – и при открывании рта. Кроме того, у инфузорий имеются разнообразные «органы чувств», которые тоже все время меняют их МП.

В протоплазме инфузорий гораздо больше калия и гораздо меньше натрия, чем в окружающей воде. Это значит, что туфелька имеет где-то в своем хозяйстве Ка – К-насос. Оказалось что концентрация Ка+ в жидкости, выбрасываемой из выделительной вакуоли, выше, чем в цитоплазме. Это показывает, что по крайней мере часть молекул N8 – К-насоса размещена на мембране выделительной вакуоли. Значит, выделительная вакуоль регулирует не только содержание воды в инфузории, но и содержание Ш+ . Таким образом, вакуоль гораздо больше похожа на почки высших организмов, чем думали раньше.

Посмотрим теперь, как Ка+ попадает внутрь клетки. Во-первых, он заглатывается вместе с пищей и попадает в пищеварительные вакуоли. В вакуоли поступают пищеварительные ферменты и идет переваривание пищи; в некоторый момент путешествия вакуоли там создается кислая среда, как в желудке человека, а потом среда в ней становится щелочной и таким образом «путешествующий желудок» превращается в «двенадцатиперстную кишку». У человека пища подвергается разным воздействиям в разных точках пищеварительного тракта, а у инфузорий – в разные моменты времени в одном и том же мембранном пузырьке. Но, несмотря на эти различия, результат один: пища в вакуоли расщепляется до аминокислот и других мелких молекул. В мембране вакуолей имеются разнообразные транспортные молекулы, ведь молекулы углеводов и аминокислот должны быть переправлены в цитоплазму до того* как пищеварительная вакуоль окончит свое существование и сольется с наружной мембраной. Среди этих транспортных молекул много «электрических транспортеров», которые присоединяют к себе молекулы пищевых веществ и ион Ма+ , а затем выбрасывают их в цитоплазму. Мы рассказывали вам о работе таких транспортеров в параграфе «Зачем невозбудимым клеткам потенциал покоя». Разница состоит лишь в том, что там мы говорили о транспорте веществ из наружной среды в клетку, а у инфузорий этот транспорт идет из пищеварительной вакуоли. Но это различие несущественно, можно считать, что в таких вакуолях находится кусочек проглоченной внешней среды. Вот таким образом вместе с молекулами сахара и аминокислот ионы + и попадают в протоплазму. А дальше к ним вполне можно применить выражение: «Натрий сделал свое дело, натрий может уходить». Только уходят они не сами, а выкачиваются натриевым насосом в выделительную вакуоль.

Существует и второй путь поступления] + в клетку инфузории. Мы уже говорили, что у инфузории есть разные «органы чувств». Расмотрим тут ее чувствительность к механическим воздействиям. При прикосновении к переднему концу инфузории в ней возникает деполяризационный рецепторный потенциал; а если «удар по носу» достаточно силен, то возникает и ПД. Эти потенциалы создаются в основном ионами Са++ , которых в пресной воде больше. Однако при деполяризации или ПД в протоплазму клетки попадают и ионы Лт а+ .

Проникновение Са++ внутрь клетки влияет на орган движения инфузории – реснички – точно так же, как у нас вхождение Са++ в мышечные клетки необходимо для их сокращения. Кстати, и разрядка трихоцист у инфузорий связана с потоками Са++ в клетку. Большинство Са-каналов инфузорий расположено прямо на мембране ресничек. Если удар по передней части инфузории вызвал ПД, то откроется много Са-каналов, внутрь клетки войдет много Са++ , а от этого реснички инфузории меняют направление своего удара. Возникает «реверс»: инфузория отплывает «хвостом вперед» от раздражителя, например от препятствия, на которое она натолкнулась. После того как Са-насос и митохондрии уберут излишки Са++ из цитоплазмы, нормальная работа ресничек восстанавливается.

Изучение плавательного поведения туфельки показало, что работа ее ресничек зависит от МП. При нормальном

ГШ ее реснички ударяют примерно 20 раз в секунду, а при гиперполяризации частота их возрастает до 50 в секунду. При сильной деполяризации, как мы уже говорили, возникает «реверс». В действительности движением ресничек управляет не сам потенциал, а концентрация ионов Са++ и других веществ. Например, при гиперполяризации туфельки, как и при деполяризации, в клетку входят ионы Са++ , но они входят через особые каналы, расположенные иначе, и это вызывает не реверс движения, а ускорение ударов ресничек. Реснички покрывают фактически все тело инфузории, поэтому их каналами удобно управлять с помощью МП; ведь туфелька – одна небольшая клетка и изменение потенциала в одной ее части распространяется и на другие. Отсюда ясно, что управлять с помощью МП разнообразными процессами для туфельки невозможно: процессов, которыми надо управлять, много, а потенциал один. Туфелька выходит из положения тем» что использует ионные каналы, чувствительные не к сдвигу МП, а другим сигналам, например, каналы трихоцист чувствительны к механическим или химическим воздействиям.

Было выяснено, что в «хвосте» туфельки имеется чувствительный участок, при механическом раздражении которого открываются К-каналы и возникает гиперполяризация клетки, что увеличивает частоту работы ресничек. В результате этого нормальная туфелька начинает плыть быстрее, если ее хватают за хвост.

Мы сказали слова «нормальная туфелька» не случайно. Дело в том, что существуют инфузории-мутанты. При их изучении было показано, что мутация в одном гене может сделать дефектным белок, образующий тот или иной канал. Существует мутация, которая портит Са-канал, чувствительный к удару по передней части тела инфузории. Такая инфузория, наткнувшись на препятствие, все время «бьется головой о стену», так как ионы Са++ в нее при механическом раздражении не входят и не обеспечивают реверс. Другая мутация портит Са-канал иначе, замедляя его инактивацию. Такие мутанты становятся очень «пугливы»: столкнувшись с препятствием, они отскакивают от него и долго-долго плывут хвостом вперед, так как через их Са-каналы входит много Са++ и нормальная работа ресничек долго не восстанавливается.

Интересно, что передний и задний концы туфельки по-разному реагируют не только на механические, но и на температурные воздействия. В 1987 г. японские исследователи показали, что на переднем конце туфельки имеется участок, чувствительный к холоду, а на заднем – к теплу; у позвоночных животных для той же цели служат специальные клетки – тепловые и холодовые рецепторы. При действии на туфельку холода на ее переднем конце открываются Са-каналы, а при действии тепла на заднем закрываются К-каналы. Результат один и тот же: МП снижается. Однако поведенческий эффект температурного воздействия состоит в основном не в изменении скорости плавания, а в том, что туфелька начинает заметно чаще, чем при привычной для нее температуре, менять направление своего движения, Если при таких метаниях она выскочит вновь в область привычных температур, то поплывет по прямой, удаляясь от горячего или холодного места. Как управляется частота поворотов, пока неизвестно. Замечательная особенность ионных каналов, чувствительных к температуре, состоит в том, что они обладают памятью. Если инфузория жила при 20 С, то 15 С для нее холодно, и реагируют холодовые рецепторы; но если инфузория достаточно долго жила при 10 С, то 15 С для нее тепло, и реагируют тепловые рецепторы. Как перестраивается работа чувствительных к температуре каналов во время привыкания, пока не выяснено.

У такая мозаика особенно богата, так как она должна обеспечить этой клетке разнообразное поведение. Так что инфузория – интереснейший пример «мозаики каналов». С другой стороны, изучение инфузорий дает нам еще один урок. Совместная работа ионных каналов туфельки весьма затрудняет их изучение. Мы так много поняли о туфельке потому, что до этого были изучены клетки других разнообразных животных. Очень полезно сравнивать разные объекты. Оказалось, что каналы и органеллы туфельки работают в общем на тех же принципах, что и каналы и органы других организмов. Очень интересно было бы выяснить, какие черты этого сходства объясняются наследством, полученным от общего предка, а какие являются результатом естественного отбора, который привел по разным путям к сходным результатам,


Об электростанциях клеток и – немного о бактериях – первых электриках Земли

Без этого небольшого параграфа наша книга была бы неполна, ведь в ней отсутствовало бы важнейшее для всего живого использование электричества – использование его для обеспечения каждой клетки энергией.

Откуда организмы получают энергию? Животные – из пищи, которую они съедают. Биохимиками было выяснено, что пища у животных, дышащих кислородом воздуха, медленно окисляется, а за счет этой энергии в организме синтезируется особое вещество – АТФ. Это вещество играет роль универсальной валюты и расходуется животными для синтеза новых веществ, для работы мышц или ионных насосов и т.д. Было выяснено также, что процесс сгорания пищи и синтеза АТФ осуществляется особыми клеточными органеллами – митохондриями, описанными еще в 1850 г. Келликером в мышцах насекомых. Митохондрии имеются не только у животных, но и у растений и грибов, нет их только у бактерий.

Если сделать еще один шаг в своем любопытстве и задать вопрос: «А откуда же берется пища?», то на него ответ тоже известен. В конечном счете пища производится фотосинтезирующими организмами, получающими свою энергию от Солнца. В растениях имеются, кроме митохондрий, особые органеллы – хлоропласта, содержащие хлорофилл. Эти органеллы умеют, как имитохондрии, синтезировать АТФ, а кроме того, умеют синтезировать из воды и углекислого газа углеводы.

Все реакции окисления пищи, синтеза АТФ, синтеза углеводов достаточно сложны, происходят при участии многочисленных ферментов и более полувека широкоизучаются в разнообразных биохимических лабораториях. Какое же отношение они имеют к теме этой книги? Еще лет 30 назад наэтот вопрос был бы дан уверенный ответ – никакого! Но в 1961 г. английский ученый Ж. Митчел выдвинул гипотезу, что энергия пищи сначала преобразуется в электрическую энергию, а уж та затрачивается на производство АТФ. Эта гипотеза былав конце концов доказана, и мы считаем необходимым кратко рассказать об энергетическом обеспечении организмов. А кратким наш рассказ будет прежде всегопотому, что на эту тему недавно была написана обстоятельная, понятная и яркая книга «Рассказы о биоэнергетике», автор которой В.П. Скулачев – один из создателей биоэнергетики.

В чем же более конкретно состояла гипотеза П. Митчела? Митчел предположил, что окисление пищи приводит к возникновению разности потенциалов на мембране митохондрий за счет выхода протонов из митохондрий, затем эта электрическая энергия тратится на синтез АТФ. Митчел назвал свою гипотезу хемиосмотической, подчеркивая, что химическая энергия пищи преобразуется в создание градиента Н+ , т.е. тратится на создание осмотической р?

К-во Просмотров: 140
Бесплатно скачать Реферат: Работа электрических органов рыб