Реферат: Радиотехнические цепи и сигналы
"Радиотехнические цепи и сигналы" (РТЦ и С) - базовая дисциплина в системе подготовки современного инженера в области радиотехники и радиоэлектроники. Его целью является изучение фундаментальных закономерностей, связанных с получением сигналов, их передачей по каналам связи, обработкой и преобразованием в радиотехнических цепях. Важная задача курса РТЦ и С - научить студентов выбирать математический аппарат для решения конкретных научных и технических задач в области радиотехники, видеть тесную связь математического описания с физической стороной рассматриваемого явления, уметь составлять математические модели изучаемых процессов с учетом этих целей и задач. Курсовая работа ориентирована на закрепление навыков и формирование умений по математическому описанию сигналов, определению их вероятностных и числовых характеристик, энергетической и корреляционной функции и характеризующих их параметров, а также по анализу преобразования случайного процесса в нелинейных цепях. Кроме этого, студенты должны иметь глубокое знание обобщенной структурной схемы радиотехнической системы передачи сообщений и осуществляемых в ней многочисленных преобразований.
Успешное выполнение курсовой работы предполагает использование студентами знаний из предшествующих дисциплин - "Высшая математика", "Основы теории цепей", "Теория вероятностей".
В настоящих методических указаниях приведены задания на курсовую работу, образцы вариантов исходных данных и даны методические указания по его выполнению. Конкретные варианты заданий выдаются студентам индивидуально. В приложениях приведен необходимый справочный материал. В конце дан список литературы для самостоятельного изучения соответствующих разделов курса.
На основании выше изложенного курсовая работа выполняется по теме "Преобразование сигналов в радиотехнических устройствах" и включает в себя следующие разделы:
1. Составление обобщенной структурной схемы радиотехнической системы передачи непрерывных сообщений дискретными сигналами и описание функциональных преобразований сообщений и сигналов в ней с приведением графических иллюстраций во временной и частотной областях.
2. Определение вероятностных и числовых характеристик.
3. Определение корреляционной функции сигнала.
4. Нелинейное преобразование сигналов.
1. ЗАДАНИЕ НА КУРСОВУЮ РАБОТУ.
1.1. Вводные замечания.
В предисловии дано обоснование направленности содержания курсовой работы с учетом места курса "Радиотехнические цепи и сигналы" в подготовке радиоинженеров.
Задание учитывает устойчивые тенденции перехода от аналоговых систем к цифровым системам передачи и обработки непрерывных сообщений на основе дискретизации, квантования и импульсно-кодового преобразования исходных непрерывных сообщений (см. ниже п. 1.2).
Статистическое описание радиотехнических сигналов, оценивание их физических характеристик является математическим "инструментом" радиоинженера при решении многообразных практических задач (п. 1.3).
Наряду с полным описанием свойств сигналов с помощью многомерных вероятностных характеристик широко применяются также функция энергетического спектра и корреляционная функция сигналов. Последние связаны между собой преобразованием Фурье (по теореме Хинчина-Винера) и имеют фундаментальное значение в теории стационарных случайных процессов. Нахождение корреляционной функции сигналов с различным энергетическим спектром предусмотрено в п. 1.4 задания.
В п. 1.5 задания требуется определить вероятностные и числовые характеристики сигнала на выходе безынерционного нелинейного устройства с заданной зависимостью y = f(x) при воздействии на него стационарного гауссовского случайного процесса.
1.2. Составление структурной схемы радиотехнической системы.
Изобразить обобщенную структурную схему радиотехнической системы передачи непрерывных сообщений дискретным сигналом. Привести краткое описание назначения входящих в нее блоков и графики временных и спектральных диаграмм на выходе каждого из них, иллюстрирующие (качественно) преобразование сообщения и сигнала в системе передачи непрерывных сообщений. Вид модуляции выбирается самостоятельно.
1.3. Определение вероятностных и числовых характеристик.
Для заданной реализации эргодического сигнала U(t) , вид и параметры которой соответствуют вашему варианту, определить:
а) Одномерную плотность распределения вероятностей мгновенных значений w(u) ;
б) Функцию распределения вероятности F(u);
в) Математическое ожидание, дисперсию и среднеквадратическое отклонение двумя способами:
- усреднением по множеству реализаций;
- усреднением по времени;
г) Вероятность того, что значения сигнала превысят заданный уровень анализа Ua или будут находится в заданном интервале от U1 до U2 .
Построить графики w(u) и F(u) и показать на них математическое ожидание, среднеквадратическое отклонение, вероятность того, что значения сигнала будут меньше уровня анализа Ua или будут находится в заданном интервале.
1.4. Определение корреляционной функции сигнала.
Для случайного сигнала с заданным энергетическим спектром W( w) определить:
а) Корреляционную функцию K( t) ;
б) эффективную ширину спектра;
в) интервал корреляции.
Изобразить графики W( w) и K( t) , показать на них эффективную ширину спектра и интервал корреляции.
1.5. Нелинейное преобразование сигналов.
Стационарный гауссовский случайный процесс u(t) с параметрами m(t) и s(t) воздействует на безынерционную нелинейную цепь с характеристикой, заданной в варианте.
--> ЧИТАТЬ ПОЛНОСТЬЮ <--