Реферат: Радиоволновые радиационные методы контроля РЭСИ Методы электронной микроскопии

На (рис. 7) показан оже-спектр загрязненной поверхности GaAs из кото­рого видно, что наряду с основными спектрами GaAs, в пленке присутствуют примесные атомы S, О и С. Регистрируя значения энергий оже-электронов, эмитируемыми атомами при их возбуждении и сравнивая эти значения с табу­лированными, определяют химическую природу атомов, из которых эти элект­роны были эмитированы.

Рисунок 7 – Оже-спектр загрязненной поверхности GaAs

Примечание: метод получил свое название по имени французского физика Пьера Оже, который в 1925 г. открыл эффект испускания электронов атомами вещества в результате возбуждения их внут­реннего уровня рентгеновскими квантами. Эти электроны получили название оже-электронов.

Эмиссионная электронная микроскопия (ЭЭМ).

При специальных условиях поверхность образца может испускать электро­ны, т.е. являться катодом: при приложении сильного электрического поля к поверхности (автоэлектронная эмиссия) или под действием бомбардировки по­верхности частицами.

В эмиссионном микроскопе показанном на рис. 8, поверхность образца является электродом системы, образующей с анодом электронную линзу.

Применение ЭЭМ возможно для материалов, которые имеют малую работу выхода. Исследуемое изделие является как бы составной частью электронно-оптической системы ЭЭМ, и в этом его принципиальное отличие от РЭМ.

ЭЭМ используют для визуализации микрополей. Если р-п-переход (1) (рис. 9) поместить в однородное электрическое поле (2) и подать на него запираю­щее напряжение, то поле, создаваемое р-п-переходом (3) (при больших токах утечки), будет искривлять линии основного поля.

Искривление линий позволяет определить распределение потенциала по по­верхности образца.

Электронно-отражательная спектроскопия (ЭОС).

В ЭОС поверхность наблюдаемого образца поддерживается при таком потен­циале, что все или большая часть облучающих электронов не попадают на по­верхность образца.

Принцип его работы показан на рис. 10. Коллимированный электронный луч направлен на поверхность образца перпендикулярно к ней. Электроны,

Рисунок 8 – Принцип работы эмиссионного микроскопа

Рисунок 9 – Визуализация p-n-перехода с помощью ЭЭМ

- p-n-переход, включенный в обратном направлении;- электронные

траектории поля р-п-перехода.


Пролетевшие через последнюю апертуру линз, быстро замедляются и поворачи­ваются обратно в точке, определяемой потенциалом поверхности образца отно­сительно катода и напряженностью электрического поля на поверхности образ­ца. После поворота электроны вновь ускоряются, пролетая обратно через лин­зы, и увеличенное изображение проецируется на катодолюминесцентный эк­ран. Дополнительное увеличение можно получить, отделяя выходящий пучок от входящего в слабом магнитном поле и используя дополнительные увеличитель­ные линзы на пути выходящего пучка.

Контрастность в выходящем пучке определяется топологией поверхности и изменениями электрического потенциала и магнитных полей на ней.

Напряжение на образце

Рисунок 10 – Принцип работы электронного отражательного микроскопа


ЛИТЕРАТУРА

1. Глудкин О.П. Методы и устройства испытания РЭС и ЭВС. – М.: Высш. школа., 2001 – 335 с

2. Испытания радиоэлектронной, электронно-вычислительной аппаратуры и испытательное оборудование/ под ред. А.И.Коробова М.: Радио и связь, 2002 – 272 с.

3. Млицкий В.Д., Беглария В.Х., Дубицкий Л.Г. Испытание аппаратуры и средства измерений на воздействие внешних факторов. М.: Машиностроение, 2003 – 567 с

4. Национальная система сертификации Республики Беларусь. Мн.: Госстандарт, 2007

5. Федоров В., Сергеев Н., Кондрашин А. Контроль и испытания в проектировании и производстве радиоэлектронных средств – Техносфера, 2005. – 504с.

К-во Просмотров: 325
Бесплатно скачать Реферат: Радиоволновые радиационные методы контроля РЭСИ Методы электронной микроскопии