Реферат: Расчет на прочность при напряжениях, циклически изменяющихся во времени

где nσи пτопределяются по формулам (12) и (13).


ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА ЗАПАСА ПРОЧНОСТИ ПРИ НЕСИММЕТРИЧНОМ ЦИКЛЕ НАПРЯЖЕНИИ

Для расчетов при несимметричном цикле напряжений принимают упрощенную диаграмму CMLпредельных напряжений образца (рис. 12.6 и 12.14).

Учитывая концентрацию напряжений, влияние абсолютных размеров, состояние поверхности, строят диаграмму предельных напряжений детали. При этом в соответствии с данными опытов влияние перечисленных факторов


относят только к переменной составляющей цикла, т. е. к амплитуде σа. Предельная амплитуда I напряжений для образца, согласно формуле (7), равна

(14)

Предельная амплитуда на­пряжений для детали, согласно сказанному выше, равна

(15)

Уравнение линии предельных напряжений EN(см. рис. 12.14) \ для детали получит вид

(16)

Здесь штрихами обозначены текущие координаты.

Вычислим теперь коэффициент запаса прочности детали при действии переменных напряжений и (точка Rдиаграммы — см. рис. 12.14).

Предположим, что при увеличении нагрузки на деталь отношение . Такое нагружение называется простым. В этом случае предельной точкой, соответствующей разрушению, будет являться точка S.

Коэффициент запаса прочности будет равен отношению отрезков SS' к RR':

(17)

Величину (ординату точки S) найдем в результате совместного решения уравнений линии ENи линии OS. Уравнение линии OSимеет вид

(18)

Штрихами обозначены текущие координаты.

Приравняв правые части формул (16) и (18), получим

откуда

Подставив значение в формулу (16) или (18), найдем ординату точки S

(19)

Следовательно, на основании формулы (17) получается следующая окончательная зависимость для определения коэффициента запаса прочности

(20)

Аналогично при кручении

(21)

При сложном напряженном состоянии, возникающем, например, при кручении с изгибом, коэффициент запаса прочности вычисляется по формуле (9.43)

К-во Просмотров: 302
Бесплатно скачать Реферат: Расчет на прочность при напряжениях, циклически изменяющихся во времени