Реферат: Расчет надежности электроснабжения подстанции Южная
ВМП 10к
QF3
ВМП 10к
Шины 10 кВ
Шины 6 кВ
ВВЕДЕНИЕ
Проблема обоснования целесообразного уровня надежности систем электроснабжения на современном этапе развития имеет большое значение. Аварийные и внезапные перерывы электроснабжения потребителей вызывают большой народнохозяйственный ущерб, обусловленный поломкой оборудования, порчей сырья и материалов, затратами на ремонты, недовыпуском продукции, простоями технологического оборудования и рабочей силы, а также издержками связанными с другими факторами.
Сегодня методы анализа надежности используются уже во многих отраслях техники. Однако проблема надежности в ее количественной постановке при проектировании и эксплуатации систем электроснабжения необыкновенно сложна. Так для рассмотрения вопросов надежности, при эксплуатации систем электроснабжения необходимо учесть как современные достижения современной теории надежности, так и специфику функционирования систем силового типа, подверженных в значительной степени влиянию неблагоприятных воздействий внешней среды и непосредственно связанных с электрической системой.
Целью данной работы является попытка рассмотрения надежности функционирования оборудования подстанции, и связанная с этим надежность бесперебойного обеспечения потребителей электроэнергией.
1. РАСЧЕТ ПОКАЗАТЕЛЕЙ НАДЕЖНОСТИ ЭЛЕМЕНТОВ
1.1. Модель отказов и восстановления силового трансформатора
Рассмотрим трансформатор как элемент, условно состоящий из двух последовательно соединенных элементов, в одном из которых могут появляться внезапные отказы, а в другом - постепенные. Внезапные отказы появляются вследствие резкого, внезапного изменения основных параметров под воздействием одного или нескольких случайных факторов внешней среды либо вследствие ошибок обслуживающего персонала. При постепенных отказах наблюдается плавное, постепенное изменение параметра элементов в результате износа отдельных частей или всего элемента в целом.
Вероятность безотказной работы представим произведением вероятностей
Ртр (t)=Рв (t)*Ри (t), (1.1)
где Рв (t) и Ри (t) — соответственно вероятности безотказной работы условных элементов, соответствующих внезапному и постепенному отказу в следствии износа.
В теории надежности в качестве основного распределения времени безотказной работы при внезапных отказах принимается показательное распределение:
(1.2)
Постепенные отказы трансформатора происходит в основном по причине износа изоляции . Износ можно описать законом распределения Вейбулла-Гнеденко
(1.3)
где t0 — порог чувствительности, то есть элемент гарантировано не откажет , в интервале времени от 0 до t0 может быть равно нулю. Тогда окончательно имеем:
Pтр (t) = e- l t ×e-ct . (1.4)
Причинами внезапных отказов трансформатора являются повреждения вводов трансформатора вследствие перекрытия контактных соединений, утечка масла. Причинами постепенных отказов в свою очередь будут нарушения изоляции обмоток вследствие возникновения внешних и внутренних перенапряжений, сквозных токов коротких замыканий и дефектов изготовления. На основании принятых критериев выделим два статистических ряда для внезапных и постепенных отказов табл.2.
Таблица 2
Статистический ряд внезапных и постепенных отказов силового трансформатора
Y, ч | Y, ч | Y, ч | X, ч | X, ч | X, ч |
61039 | 57546 | 53529 | 43774 | 45022 | 45850 |
59612 | 55392 | 51355 | 41283 | 42078 | 42906 |
57981 | 53986 | 60205 | 38793 | 39628 | 40455 |
56107 | 52062 | 58217 | 36302 | 36728 | 37554 |
54349 | 60483 | 56438 | 44608 | 45436 | 46264 |
52573 | 58564 | 55216 | 41664 | 42492 | 43320 |
60761 | 56854 | 52914 | 39215 | 40041 | 40869 |
58783 | 55739 | 50785 | 36581 | 37141 | 37967 |
54733 | 38380 | ||||
Yср | D t | Т | l | ||
56209 | 1827 | 40974 | 2,44057E-05 |
Параметр показательного закона l находим по формуле:
(1.4)
где хср — среднеее значение наработок на отказ.
Среднее время безотказной работы определим по формуле
(1.5)
Оценим параметры распределения Вейбулла-Гнеденко. Для этого вычислим среднеее значение наработки на отказ
(1.6)
Разобьем выборку y на интервалы, которые выберем по формуле