Реферат: Расчет технических характеристик систем передачи дискретных сообщений
* нарисовать структурную схему оптимального приемника и записать
алгоритм работы;
* вычислить вероятность неправильного приема декретного двоичного
сигнала при отношении энергии сигнала к спектральной плотности
шума на выходе детектора h2 =169;
* построить графики зависимости Pош =f(h) для ЧМ и ФМ и сравнить их.
Целью оптимального приема повышение верности принимаемого сообщения, эта задача решается выбором оптимальной структуры приемника.
Задача приемника заключается в следующем: он анализирует смесь сигнала и шума Z(t) в течение единичного интервала времени и на основании этого анализа принимает решение, какой из возможных сигналов присутствует на входе приемника. Структурная схема оптимального демодулятора, построенного на согласованных фильтрах для приёма ЧМ сигнала приведена на рис.6.
Е1 /No
СФ1 АД1 СУ1
Z(t) РУ bi*
СФ2 АД2 СУ2
Е2 /No
Рис.6
Смесь сигнала и шума Z(t) фильтруется согласованным фильтром, а затем выделяется огибающая сигнала на выходе этого фильтра. Огибающая сравнивается с пороговым уровнем, величина которого при равных априорных вероятностях P(U1(t)=P(U2(t) определяется соотношением Ei/No. Если эти вероятности не равны, пороговый уровень изменится на lnP(U1(t)/P(U2(t). При превышении порогового уровня в верхнем канале принимается решение bi*=1, а если в нижнем, то bi*=0. Временные диаграммы поясняющие работу оптимального демодулятора ЧМ сигнала приведены на рис.7
Рис. 7.
Алгоритм приёма имеет вид:
Т Т
ò Z(t)×Si(t)dt – 0.5Ei > ò Z(t)×Sj(t)dt – 0.5Ej; j¹i,
0 0
где Ej – энергия ожидаемого сигнала.
Устройство, непосредственно вычисляющее скалярное произведе-
ние: Т
(Z,Si) – ò Z(t)×Si(t)dt , называют активным фильтром, или коррелятором.
0
Поэтому приёмник реализующий данный алгоритм называют корреляционным.
Вероятность неправильного приёма дискретного двоичного сигнала для ЧМ модуляции, при отношении энергии сигнала к спектральной плотности шума на выходе детектора h2 =169, определим по формуле:
P=0,5 e –0.5 h2 =0,5 e - 84,5 = 10-37
Вероятность ошибки для ЧМ сигнала определяется по формуле:
Pош =0,5[1-Ф(h)],
где - функция Крампа.