Реферат: Разработка анализатора газов на базе газового сенсора RS 286-620

Назначением измерительной части прибора является измерение сопротивления на чувствительном элементе газового датчика, его преобразование в цифровой код и дальнейшая передача этого кода в микропроцессор для обработки. Сопротивление датчика определяется по падению напряжения на нем. Поскольку ток, протекающий через чувствительный элемент датчика является величиной того же порядка, что и токи протекающие по измерительным цепям современных аналого-цифровых преобразователей, то для устранения искажений от АЦП необходимо применить гальваническую развязку. В качестве такой развязки целесообразно применять операционный усилитель с единичным коэффициентом усиления.

При выборе микросхемы АЦП основными критериями отбора являются следующие

Диапазон измеряемых напряжений 0-5 В.

Точность измерений не хуже 1%

Совместимость сигналов с микропроцессором.

Удобство управления и обмена информацией.

При проектировке прибора из-за нехватки свободных портов микроконтроллера было решено использовать АЦП с последовательным интерфейсом. После детального рассмотрения имеющихся комплектующих круг выбора был сужен до двух изделий - микросхем AD7893 и AD 7896. Окончательный выбор был сделан в пользу последней, как более доступной.

При выборе микросхемы операционного усилителя основным критерием при выборе была линейность всего измерительного блока. Проводились испытания блока с микросхемами AD832, AD820,AD282. Лучший результат по линейности соответствует блоку на базе AD820. Соответствующая вольт-кодовая характеристика приведена в Приложении 8.

Выбор устройства отображения информации

Для отображения результатов измерений и служебной информации необходимо применение точечно-матричного индикатора. В настоящее время существует 3 основных семейства устройств отображения информации- вакуумно - люминесцентные, светодиодные и жидкокристаллические.

Вакумно- люминесцентные приборы требуют относительно высоких (порядка 30-50 В) напряжений питания и дополнительных цепей питания переменного тока для обеспечения прогрева катода. Применение такого устройства отображения в данном приборе существенно увеличило бы его сложность и габариты.

Матричные светодиодные устройства отображения изготавливаются в виде относительно небольших матриц (как правило 7х5 или 8х8 элементов). Одного такого устройства достаточно для отображения одного символа. Для работы прибора необходимо одновременное отображение по, крайней мере, 12-15 символов. При сборке устройства отображения , удовлетворяющего таким требованиям из отбельных элементов по 1 символу возникают определенные технологические трудности, связанные с размещением большого количества электрических цепей на плате устройства отображения информации.

Жидкокристаллические устройства отображения информации лишены недостатков, присущих двум первым типам устройств отображения. Из-за этого и благодаря малому энергопотреблению они получили наиболее широкое распространение в современной технике.

Управление точечно-матричным устройством отображения организовано при помощи вертикальных и горизонтальных электродов, на пересечении которых расположены отдельные элементы отображения информации-точки. При подаче напряжения на один из горизонтальный электродов (строку изображения) на вертикальных электродах должны быть выставлены уровни напряжения, соответствующие активности элементов изображения в данной строке. При снятии напряжения со строки эти уровни должны быть сняты и вновь выставлены при активизации следующей строки. После того, как поочередно будут активированы все строки изображения цикл отображения должен быть повторен. При достаточно большой частоте активации строк человеческий глаз воспринимает изображение как неподвижное.

Для обслуживания устройства отображения необходимы существенные затраты ресурсов прибора, либо выделение отдельного блока, предназначенного для управления отображением информацией.

В приборе в качестве устройства отображения применяется стандартный ЖК модуль со встроенными схемами управления LM44780. Благодаря удобству интерфейса модуль удалось включить непосредственно в шину данных-адреса, что позволило избежать дополнительной загрузки портов микроконтроллера.

Краткое описание и основные характеристики устройства отображения информации приведены в приложении 9.

Описание при бора

Описание сенс ора RS286-620

Сенсор RS 286-620 производства RS-Components представляет собой тонкопленочный полупроводниковый датчик для определения загрязненности воздуха. Датчик состоит из нагревателя и тонкопленочного чувствительного элемента. Частицы примесей, содержащиеся в окружающем датчик воздухе, адсорбируются на поверхности чувствительного элемента. Чувствительный элемент, состоящий из полупроводника, при адсорбции на его поверхности примесей приобретает дополнительные донорные или акцепторные уровни в запрещенной зоне. При подаче напряжения на нагреватель датчика температура полупроводника и кинетическая энергия электронов в нем возрастает. При достижении температурой определенного критического значения доля электронов, способных преодолеть запрещенную зону между верхним краем валентной зоны и энергетическим уровнем примеси-акцептора (либо между донорным уровнем примеси и нижним краем зоны проводимости) становиться достаточной для обеспечения заметного тока через чувствительный элемент. При длительном прогреве датчика молекулы примеси испаряются с поверхности чувствительного элемента (происходит самовосстановление датчика).

Фирмой-изготовителем предлагается определять степень загрязненности воздуха, измеряя проводимость датчика при постоянном значении температуры чувствительного элемента. Тогда может быть установлено соответствие между загрязненностью воздуха и проводимостью датчика.

Различные вещества-загрязнители создают примесные уровни в на различном удалении от границы зоны проводимости. Для забрасывания электронов на эти уровни необходимо по-разному нагреть полупроводник. Кроме того, каждое вещество характеризуется определенной зависимостью адсорбции от температуры поверхности.

Поэтому при фиксированной температуре датчика по величине тока через чувствительный элемент, загрязненный тем или иным веществом, можно пытаться судить о том, какое именно вещество адсорбировано на поверхности датчика. Изменяя температуру датчика в некотором интервале, можно попытаться определить химический состав газовой смеси, окружающей датчик. При более низких температурах проводимость датчика будет обусловлена, в основном, примесями, с уровнями, расположенными ближе к границе запрещенной зоны. С ростом температуры свой вклад в суммарную проводимость примесей, уровни которых более удалены от границы зоны проводимости возрастает.

В процессе работы над прибором проводилось изучение характеристик газового датчика RS 286-620. Датчик имеет следующие характеристики:

Максимальное напряжение на нагревателе 5 В

Максимальное напряжение на сенсоре 5 В

Максимальная рассеиваемая нагревателем мощность 0,8 Вт

Максимальная температура нагревателя 300 о С

Сопротивление нагревателя при Т=20 о С 29,5 Ом

К-во Просмотров: 916
Бесплатно скачать Реферат: Разработка анализатора газов на базе газового сенсора RS 286-620