Реферат: Разработка демонстрационных программ для применения в процессе преподавания физики
Ф+
Это обыкновенное линейное дифференциальное уравнение второго
порядка с постоянными коэффициентами. Колебания, описываемые ли-
нейными дифференциальными уравнениями, называются линейными ко-
лебаниями, а соответствующие колебательные системы - линейными
- 9 -
ш1.0
системами. Уравнение (1.1.1) имеет следующие решения[18]:
Ф-
ш1.0
7|\\\\\\\\\
1) 7 w 40 0 > 7d 4 , 7 W 0 = 7? w 40 52 7 0+ 7d 52 0 - слабое затухание
q = e 4 0(A Cos( 7W 0t) + B Sin( 7W 0t)); A=q 40 0;B= ─── q 40;
7W
4- 7в 4t 0 4- 7в 4t
q'= - 7d 0e 4 0(A Cos( 7W 0t) + B Sin( 7W 0t))+ e 4 0(A 7W 0Cos( 7W 0t) + B 7W 0Sin( 7W 0t))
7|\\\\\\\\
7/ 0 7d 52 4 - 7в 4t
q=q 40 7 / 0 1+ ──── e 7 0Cos( 7W 0t- 7f 40 0); (1.1.3)
7? 0 7W 52
7d
где tg 7f 40 0 = ─── - сдвиг фаз;
7W
7( 0 7d 52 0 7) 4- 7в 4t
I = q 40 7* 01 + 7 0──── 78 0 7W 0e 7 0Sin( 7W 0t) (1.1.4)
Частный случай: R=0 и 7d 0=0 (гармонические колебания)
q = q 40 0Cos( 7w 40 0t) (1.1.5)
I = q 40 7w 40 0Sin( 7w 40 0t) (1.1.6)
2) Критический режим: 7 цw 40 0= 7d