Реферат: Разработка и исследование модели отражателя-модулятора (WinWord zip-1Mb)
Диаграмма направленности симметричного вибратора может быть получена с помощью метода, имеющего большое значение в теории и технике антенн и применяющегося для получения диаграмм направленности любых антенн. Метод предполагает распределение комплексной амплитуды тока по антенне известным.
Рис.2.2. К выводу формулы поля симметричного вибратора.
В основе метода лежит принцип суперпозиции или наложения.
При выводе формулы диаграммы направленности антенна рассматривается как совокупность элементарных излучателей, поля от которых надлежит суммировать в текущей точке наблюдения, расположенной в дальней зоне на сферической поверхности радиуса r.
Разберём указанный метод и выведем формулу для диаграммы направленности симметричного вибратора.
На рис.2.2 показан тонкий вибратор с выделенными на нём двумя симметрично расположенными диполями длинной dZ с координатами центров ±Z . Там же указана система координат для отсчёта положения точки наблюдения А и координат диполей с током.
Поскольку точка наблюдения отнесена в дальнюю зону, то есть на достаточно большое расстояние r0 >>2l , то все лучи, направленные в точку наблюдения от различных диполей, можно считать практически параллельными. Это значит, что r0 , r1 и r2 связаны между собой соотношениями:
r2 - D r =r0 =r1 + D r , (2.12)
где
Dr =|Z|cos q.
Запишем поле от двух выбранных диполей, считая их достаточно тонкими (диаметр провода значительно меньше длины волны):
, (2.13)
Сравнивая поля от двух противоположных элементарных вибраторов, видим, что они только отличаются значением множителя , то есть амплитудами, обратно пропорциональными расстояниями r(Z) , и фазами, прямо пропорциональными расстояниям:
Y =k × r(z) . (2.14)
При условии r>>l отличие амплитуд будет настолько несущественным, что с хорошей точностью модули полей от всех диполей можно определять через одно и то же расстояние r0 , соответствующее середине симметричного вибратора.
Однако при оценке фазовых сдвигов полей с различием расстояний r1 и r2 нельзя не считаться.
С учётом принятых допущений поле от пары диполей записывается в виде:
, (2.15)
Чтобы получить значение полного поля и диаграммы направленности симметричного вибратора, необходимо просуммировать dE q от всех пар симметрично расположенных диполей, составляющих оба провода антенны.
Сложение бесконечного числа элементарных полей осуществляется путём интегрирования выражения (2.15) в пределах одного плеча вибратора. Результирующее поле оказывается равным:
. (2.16)
В полученной формуле в квадратных скобках выделено произведение двух множителей, зависящих от q и представляет собой диаграмму направленности в меридиональной плоскости F( q). Каждому из множителей может быть приписан определённый физический смысл.
Ниже приведены графики для F( q) при различных отношениях .
Рис. 2.3. Диаграмма направленности при l/l=0,25.
Рис. 2.4. Диаграмма направленности при l/l=0,5
Рис. 2.5. Диаграмма направленности при l/l=
0,75
2.4.Схема замещения нелинейного резистора
Нелинейный резистор - элемент электрической цепи, напряжение и ток в котором связаны нелинейным законом. Для моделирования нелинейных резисторов в радиотехнике используются несколько методов, например, замена его на эквивалентный источник напряжения (тока), управляемого током (напряжением).
В нашем случае в качестве нелинейного резистора используется диод. Для моделирования диода будем использовать зависимость тока диода от напряжения i =f (U), приложенного к его концам, то есть, заменяем источником тока, управляемым напряжением. Эту зависимость запишем аналитически в виде i =I0 ×eaU , которая хорошо согласуется с экспериментальными данными. Кроме того, диод обладает паразитной индуктивностью выводов и паразитной ёмкостью корпуса. Паразитная ёмкость корпуса моделируется включением ёмкости соответствующего номинала параллельно источнику тока, а паразитная индуктивность включением эквивалентной индуктивности последовательно с ним.
2.5.Схема замещения нелинейной ёмкости
Нелинейная ёмкость – элемент, ёмкость которого зависит от приложенного напряжения. В качестве нелинейной ёмкости берётся варикап. Поскольку варикап является диодом и включается в обратном смещении то считается, что его активное сопротивление равно бесконечности. Как и диод варикап обладает паразитной ёмкостью корпуса и паразитной индуктивностью выводов, которые моделируются аналогично паразитной ёмкости и индуктивности диода.
Получаем в качестве модели варикапа ёмкость, управляемую напряжением, с параллельно и последовательно включёнными паразитной ёмкостью и индуктивностью. Зависимость ёмкости от напряжения выражается следующей функцией:
где СВ.НОМ – ёмкость варикапа, приведённая в справочнике при напряжении смещения ЕВ.НОМ ;
jк – контактная разность потенциалов для кремниевого варикапа равна 0,65.
m – коэффициент степени (для сплавных m=0.5, для диффузионных m=0.3)
3. СОСТАВЛЕНИЕ МАТЕМАТИЧЕСКОЙ МОДЕЛИ ОТРАЖАТЕЛЯ – МОДУЛЯТОРА
Математическая модель отражателя - модулятора необходима для моделирования этого устройства с помощью вычислительной техники. Предполагается, что все элементы математической модели будут представлены как совокупность элементарных пассивных элементов с постоянными или переменными параметрами. Эта модель позволит анализировать параметры отражателя – модулятора с помощью специальных программных продуктов, предназначенных для расчёта электрических цепей и схем.
Основной задачей моделирования является создание схемного аналога вибратора – антенны отражателя - модулятора, поскольку этот элемент устройства имеет большой разброс параметров для различных частот, а нам необходима общая модель для всего рабочего диапазона частот, который имеет коэффициент перекрытия три и более. Поэтому, разработке модели именно вибратора в данном разделе будет уделено особое внимание, поскольку задача является далеко не тривиальной, кроме того аналогичной задачи не рассматривалось ни в одной книге, просмотреной в ходе подготовке к дипломной работе. Разработанный мною метод моделирования может с успехом применяться для моделирования и других цепей, поскольку в ходе моделирования был использован общий подход.