Реферат: Разработка метода формирования маршрутных матриц однородной замкнутой экспоненциальной сети массового обслуживания
По определению имеет полносвязную топологию с петлями. Т. о. в орграфе ( - концептуальная симметричная СеМО). Каждая вершина соединена дугой со всеми другими и имеет петлю . Все элементы равны 1.
Концептуальная стандартная СеМО имеет полносвязную топологию без петель. Все элементы матрицы смежности равны единице, кроме элементов главной диагонали.
Топология концептуальной эталонной СеМО может быть произвольной и должна удовлетворять лишь одному требованию - быть тождественной топологии соответствующей объектной СеМО. Поэтому тождественен орграфу объектной СеМО, матрицы и тождественны. Из связи с следует:
1) если не смежна с , то .
2) если смежна с , то если , .
3) число неизвестных сети
(14).
Введем в рассмотрение множество констант
если не смежна с и , если смежна с и мощность Иногда для может быть задано множество констант , , мощности , используемое при формировании маршрутной матрицы . В этом случае, если смежна с и , то при наличии в множестве элемента
, соответствующего полагается, что .
Объединение множества и дает множество
, элементы которого определяют значение соответствующих маршрутных вероятностей .
Для определения маршрутных вероятностей сети значительный интерес представляют возможно имеющиеся данные о сравнительной величине встречных потоков между и . Относительные интенсивности потоков требований из в равны .Обозначим отношение интенсивностей через , т. е. . Величина называется коэффициентом обмена, а уравнение - уравнением обмена.
Обозначим через множество коэффициентов обмена. Задание этого множества определяет уравнений обмена, которые могут быть использованы при определении .
Следовательно для решения неизвестных маршрутных вероятностей может быть использована система Е линейных алгебраических уравнений, включающая три подсистемы:
a) подсистема уравнений потоков (L уравнений):
b) подсистема уравнений нормировки (L уравнений):
c) подсистема уравнений обмена ( уравнений):
Число уравнений обмена зависит от топологии сети и значений , и может быть меньше [1].
Теорема 1. Для концептуальной симметричной виртуальной СеМО консервативного, регулярного или равномерного типа с концептуальным вектором маршрутная матрица всегда существует и ее элементы определяются соотношениями . Доказательство приведено в [1].
Теорема 2. Для концептуальной стандартной виртуальной СеМО консервативного, регулярного или равномерного типов маршрутная матрица существует, если совместна система уравнений:
(15)
(16)
(17)
Значения элементов матрицы определяются решением этой системы. Теорема доказана в [1].
Замечание Общее решение системы (15) - (17) определяет бесконечное число подобных матриц . Для конкретизации матрицы задают конкретные значения свободных неизвестных.
Теорема 3. Для концептуальной эталонной виртуальной сети любого типа с концептуальным вектором , заданной топологией, определяемой орграфом , матрицы смежности , заданным множеством коэффициентов обмена , маршрутная матрица существует, если совместна система уравнений
(18)
(19)
(20)
(21)
(22)
при ограничениях (23)
Доказательство см. в [1].
Примеры виртуальных СеМО различных видов рассмотрены в [1].
3. Методы построения маршрутных матриц СеМО.
3.1. Общее решение.
Задача построения маршрутной матрицы виртуальной СеМО может быть решена следующим образом:
Пусть дана концептуальная эталонная виртуальная СеМО , состоящая из L СМО. Для которой определены вектор , орграф , матрица смежности , множество , множество коэффициентов обмена.
Необходимо сформулировать маршрутную матрицу ,т.е. найти L2 неизвестных , .