Реферат: Разработка методики анализа результатов геодезических измерений пр

Переходя к средним квадратическим ошибкам, окончательно получим:

(28)

.

Характерной особенностью этих формул является то, что в них используются, кроме геодезических координат , , исходной точки, координаты пунктов 1 и 2 в геоцентрической системе координат , , и , , . Точность этих формул зависит только от величины средних квадратических ошибок геоцентрических прямоугольных координат пунктов 1 и 2. На основе этого анализа сделан вывод о целесообразности использования топоцентрических прямоугольных координат для изучения деформаций энергетических объектов в условиях Мексики.

ГЛАВА 4. РАЗРАБОТКА МЕТОДИКИ ОПРЕДЕЛЕНИЯ ОСАДОК И ДЕФОРМАЦИЙ СПУТНИКОВЫМИ МЕТОДАМИ И МЕТОДОВ ОБРАБОТКИ

С целью экспериментальной проверки предлагаемой методики анализа результатов спутниковых измерений за осадками и смещениями плотины «Саналона» были проведены работы по созданию геодезической сети спутниковыми методами в районе водохранилища.

Водохранилище находится на западном склоне Сьерра Мадре Оксиденталь (западная горная цепь Мадре) в ее нижних отрогах. В данной местности преобладают вулканические горные породы, главным образом интрузивные базальты. Плотина Саналона (из грунтовых материалов) была построена на реке Тамазула в 32 км западнее от города Кульякан штата Синалоа (Мексика). Она представляет собой земляной вал, с левой стороны находится дамба и на правом краю водослив в виде веера со свободным гребнем. Слив плотины Саналона сделан в основном из гранита, который в своей верхней части имеет участок с ярко выраженной альтерацией, доходящей до глубин около 20,0 м.

Как уже отмечалось ранее, при решении данной проблемы установлена целесообразность применения сетевого метода построений. По такому принципу реализована, в частности, локальная сеть в зоне изучаемого объекта. Для иллюстрации на рис. 1 приведена схема расположения опорных и рабочих пунктов.

Рабочие пункты CASETA, B, A и TEMPLETE находятся на гребне плотины, а опорные - вне зоны деформации в стабильных и прочных породах.

На плотине «Саналона» за исходные пункты приняты точки: CACTUS, LOMA и CULEBRA, расположенные в нижнем бьефе за пределами зоны деформаций.

Основное требование, предъявляемое к опорным пунктам и к технологии их закрепления на местности, сводится к обеспечению максимальной стабильности их местоположения в течение времени.

В общем комплексе экспериментальных исследований, относящихся к принципам построения локальных спутниковых геодезических сетей, должное внимание было уделено также обоснованию выбора длительности сеанса наблюдений, которая позволяет производить спутниковые определения на требуемом уровне точности.

В результате анализа опубликованных работ, было решено при производстве работ на плотине проводить сеансы наблюдений в течении одного часа. Измерения на всех пунктах производились двухчастотными геодезическими приемниками: 4 приемника «Z-200» фирмы ASTECH.

При условии соблюдения всех технических требований, погрешность взаимных положений двух смежных пунктов этими типами приемников не должна превышать 3-5 мм соответственно.

В таблице 1 приведены пространственные прямоугольные координаты X, Y, Z и геодезические эллипсоидальные координаты ,, рабочих пунктов первого цикла наблюдений, полученные в результате уравнивания базисных векторов с учетом их ковариационных матриц по рекуррентному алгоритму с контролем и исключением грубых ошибок.

Средние квадратические ошибки пространственных прямоугольных координат X, Y, Z рабочих пунктов из уравнивания даны в табл. 2

В таблице 3 приведены топоцентрические декартовые координаты рабочих пунктов и их оценка точности, выполненная по формулам (28), разработанным автором диссертационной работы.

Таблица 1

Рабочие пункты

X , м

Широта [С]

Y , м

Долгота [З]

Z , м

Высота, м

CAS E T A -1708627,31678 -5535015,69923 2660596,89474
24°48'55,95470" 107°09'18,5558" 129,87617
A -1707987,94741 -5535267,22002 2660478,79319
24°48'51,7647" 107°08'54,1609" 127,31152
B -1708047,09865 -5535251,72771 2660473,04779
24°48'51,5592" 107°08'56,3362" 127,29411
TEMP -1707602,55450 -5535310,99717 2660636,99941
24°48'57,4106" 107°08'40,5885" 128,54945

Таблица 2

Рабочие пункты ,мм ,мм ,мм
CASETA 3,6 8,1 3,3
A 3,4 7,4 3,4
B 2,9 6,8 3,7
TEMPLETE 3,3 8,3 4,2

Таблица 3

Рабочие пункты , м , мм , м , мм , м , мм
CAS E T A 677,40160 4,3 -515,66011 4,1 48,80393 7,2
A 548,46324 4,4 169,44743 4,7 46,27031 6,5
B 542,14086 3,5 108,35801 3,9 46,25478 5,4
TEMP 722,20086 4,1 550,61294 5,3 47,46935 7,1

Из табл. 2 и 3, видно, что точность топоцентрических прямоугольных координат после перехода от геоцентрических к топоцентрическим прямоугольным координатам остается практически одной и тоже.

Основная цель проведенных в этой области экспериментов состояла в практическом подтверждении эффективности действия изложенных выше предпосылок, изыскании надежных критериев оценки применения топоцентрических декартовых координат и конкретизации практической реализации рекомендуемых методов.

В таблице 4 приведены топоцентрические декартовые координаты, полученные по результатам наблюдений в период с января 2005 г. по июль 2006 г.

В табл. 5, 6, 7 и 8 приведены уклонения координат рабочих пунктов от начального момента в каждом цикле измерений.

Таблица 4

Рабочие пункты Дата наблюдений Топоцентрические декартовые координаты рабочих пунктов
, м , м , м
CAST

24-25.01.2005

К-во Просмотров: 351
Бесплатно скачать Реферат: Разработка методики анализа результатов геодезических измерений пр