Реферат: Развлечения и игры: моделирование вероятности событий в азартных играх и спорте

Губкин 2006

Содержание

Введение

1. Вероятность победы при игре в кости

2. Вероятность получить три карты одинакового достоинства при игре в пятикарточный покер с обменом

3. Вероятность победы в спортивных соревнованиях

4. Определение среднего размера ставки

Заключение

Список используемой литературы


Введение

Данный отчет выполнен на тему: «Развлечения и игры: моделирование вероятности событий в азартных играх и спорте».

Актуальность данной темы заключается в том, что азартные игры и наблюдение за спортивными состязаниями – популярное времяпрепровождение. Я считаю, что они так волнуют, поскольку никогда не знаешь, что случится в следующую минуту. Моделирование методом Монте-Карло представляет собой мощное средство, позволяющее определять вероятность событий в азартных играх и спорте. По сути, мы оцениваем вероятность, многократно воспроизводя азартную или спортивную игру. Если, например, мы с помощью Excel 10 000 раз смоделируем бросание кости и 4900 раз выиграем, то получим вероятность выигрыша, равную 4900/10000 или 49%. Если мы 1000 раз воспроизведем мужской полуфинал НССА, и команда Сиракуз выиграет 300 раз, то мы сможем оценить вероятность победы команды города Сиракуз на чемпионате как равную 300/1000 или 30%.

Целью данной работы является определение вероятности выигрыша при игре в кости, в покер и в баскетбол.

Для решения поставленной цели, необходимо сделать следующее:

1. Изучить правила рассматриваемых игр.

2. Познакомиться с их особенностями.

3. Рассчитать в Excel вероятности выигрышей.

Данный отчет был реализован в компьютерной программе Microsoft Excel, который помимо своих стандартных функций и возможностей позволяет моделировать вероятности событий в азартных играх и спорте.


1. Вероятность победы при игре в кости

Какова вероятность победы при игре в кости?

Чтобы ответить на этот вопрос, необходимо знать правила игры. При игре в кости участники бросают два кубика. Если в сумме выпадает 2, 3 или 12, участник проигрывает. Если – 7 или 11, то он выигрывает. Если выпадает другое число, участник продолжает бросать кости до тех пор, пока не выпадет число, равное числу, выпавшему при первом броске (называемому очком), или семерка. Если очко выпадет раньше семерки, игрок побеждает. Если семерка выпадет раньше очка, игрок проигрывает. Путем сложных вычислений мы можем доказать, что вероятность выигрыша в кости равна 0,493. Для подтверждения мы с помощью Excel многократно смоделируем игру в кости (я это сделал 2000 раз).

В данном примере важно помнить, что мы не знаем, сколько раз придется бросить кости, чтобы закончить игру. Можно доказать, что вероятность того, что игра потребует более 50 бросков, крайне низка, и поэтому мы будем воспроизводить именно 50 бросков костей. После каждого броска мы отслеживаем состояние игры:

· 0 – игра проиграна;

· 1 – игра выиграна;

· 2 – игра продолжается.

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 259
Бесплатно скачать Реферат: Развлечения и игры: моделирование вероятности событий в азартных играх и спорте