Реферат: Речной флот СССР в 60-80е годы ХХ века

Широко применяются перевозки грузов в контейне­рах и на поддонах. Грузоподъемность контейнеров уве­личивается. В настоящее время в рабочее ядро входят контейнеры грузоподъемностью 3, 5, 10 и 20 т.[2, стр. 35].

За годы Советской власти общая протяженность ис­пользуемых для судоходства рек, озер и водохранилищ увеличилась более чем в 2 раза, а искусственных пу­тей — в 12 раз и составляла в 1975 г. 14,9 тыс. км. В это число входят наи­более важные в транспортном отношении участки: Вол­га, Кама, Волго-Балтийский водный путь имени В. И. Ленина, каналы имени Москвы, Волго-Донской имени В. И. Ленина, Беломорско-Балтийский. По этим путям производятся перевозки почти 2/3 объема всех грузов, транспортируемых речным флотом[2, стр. 37].

Протяженность искусственных водных путей на начало 1977 г. в преде­лах РСФСР 115,4 тыс. км, в том числе с освещаемой и светоотражающей обстановкой 65,3 тыс. км. Из этого количества на долю восточных пароходств приходится соответственно 72,8 тыс. и 37,8 тыс. км.[4].

Далее в своей работе я хочу подробнее осветить принципы движения неводоизмещающих судов.


3. Основные типы судов речного флота.

Глиссер в переводе на русский язык означает скользящий. И дей­ствительно, глиссеры как бы скользят над поверхностью воды.

Основополагающие работы по теории глиссирования принад­лежат Г. Е. Павленко, С. А. Чаплыгину, Н. А. Соколову, Л. И. Седову и ряду других отечественных ученых [5,стр. 89].

Днище глиссера в носу имеет острокильную форму, но уже
к средней части длины корпуса становится плоским. Таким об­разом, на большей части длины днище представляет собой пластину, составляющую с горизонтом некоторый угол атаки. Поэтому на днище глиссера, как на крыло, действует гидродинамическая сила, которая раскладывается на подъемную силу и сопротивле­ние движению. Однако нужно помнить, что подъемная сила крыла создается не столько вследствие увеличения давления снизу, сколько в результате разрежения сверху, а у глис­сера давление сверху постоянно и подъемная сила создаетсятолько вследствие увеличения давления воды на днище. Поэтому на днище глиссера действует меньшая подъемная сила, чем на крыло[5, стр. 90].

Величина гидродинамической силы, а следовательно и подъем­ной силы, зависит от площади днища, скорости глиссера отно­сительно потока воды и угла атаки.

Когда глиссер плавает без движения или перемещается с не­большой скоростью, сила его веса уравновешивается силой под­держания, как у водоизмещающего судна. Но вот глиссер наби­рает скорость, тогда растет и подъемная сила. Так как вес глис­сера остается практически постоянным, то чем больше подъемная сила, тем меньшей должна быть сила поддержания, т. е. тем меньше должен быть объем подводной части глиссера[8, стр. 55].

По мере увеличения скорости судна его корпус все больше выходит из воды. Наконец, скорость глиссера становится на­столько большой, что подъемная сила уравновешивает 90— 95% веса судна. В воде остается только небольшой объем кормовой части, кронштейны гребного вала, вал, винт, руль. Действу­ющая на погруженную часть корпуса статическая сила поддер­жания теперь равна соответственно 5—10% от веса глиссера. Вот этот режим плавания и называется глиссированием.

При выходе судна на режим глиссирования резко умень­шается сопротивление воды движению судна и возрастает ско­рость при той же затрате мощности[5, стр. 92].

Чем больше водоизмещение глиссера, тем большей должна быть скорость, при которой начнется глиссирование. Так, неслож­ные расчеты показали, что при водоизмещении глиссера в 27 т. глиссирование начнется при скорости 31,6 уз, а при водоизме­щении 1000 т. — при 57,7 уз. Нетрудно сделать вывод: в насто­ящее время принцип глиссирования применим только при проек­тировании сравнительно небольших судов.

Нужно иметь в виду еще и следующее: при данном водоизме­щении скорость начала глиссирования зависит от соотношения длины и ширины судна[7, стр. 102].

Если судно вышло на режим глиссирования, и его скорость продолжает увеличиваться, то наступит такой момент, когда подъемная сила станет равна весу судна или больше веса судна. Тогда судно полностью выйдет из воды. При этом подъемная сила мгновенно упадет до нуля. По инерции глиссер пролетит некоторое расстояние в воздухе, затем ударится о воду. В этот миг появится подъемная сила, которая снова вытолкнет судно из воды, и оно опять пролетит какое-то расстояние над водой, пока не ударится о нее. Таким образом, глиссер будет как бы рекошетировать от поверхности воды, подобно плоскому камню, брошенному умелой рукой вдоль водной глади. Этот режим плавания называется чистым глиссированием[8, стр. 56].

Если глиссирование судна водоизмещением 27 т. начинается при скорости 31,6 уз., то чистое глиссирование этого же судна начнется при скорости 52,6 уз. Следовательно, в настоящее время возможно чистое глиссирование совсем небольших судов типа скутеров[10, стр. 38].

Подъемная сила, действующая на корпус глиссера, была бы значительно больше при плоском днище. Но при волнении такое судно непрерывно с силой ударялось бы днищем о волны. Это тяжело переносилось бы людьми, очень усложняло бы условия обеспечения прочности корпуса и работы механизмов. Кроме того, плоскодонный глиссер немореходен.

Поэтому корпусу глиссера в носовой части придают большую килеватость с резким изломом скуловой линии и большим раз­валом шпангоутов в верхней части. Чем ближе к середине длины корпуса, тем меньше килеватость, и постепенно днище становится плоским. Острые скулы увеличивают брызгообразование, но скру­гленные скулы вызвали бы образование волн, которые создадут сопротивление корпусу больше брызгового. Развал шпангоутов в носу дает возможность использовать брызги и бугор волн для увеличения подъемной силы[9, стр.119].

В 1958 г. глиссер «Синяя птица», развивший скорость 237 уз, установил мировой рекорд скорости[6, стр.89].

Глиссирующие суда развивают высокие скорости, но имеют ряд существенных недостатков: они недостаточно мореходны при их эксплуатации необходим большой расход мощности дви­гателей па одну тонну водоизмещения. Поэтому поиски новых принципов движения судов продолжались[11, стр.91].

Итак, мы знаем, что можно резко уменьшить сопротивление дви­жению судна, если его корпус будет выходить из воды. В 1891 г. изобретатель С. А. де Ламберт добился этого принципиально новым методом: под корпусом судна он укрепил крылья[13, стр. 152].

При движении судна на крылья действует подъемная сила: чем больше скорость, тем больше подъемная сила, уравновеши­вающая часть веса судна, и тем меньше его осадка. При некоторой скорости подъемно я сила оказывается достаточной, чтобы весь корпус вышел из воды, сопротивление упало, а скорость резко возросла[12, стр. 131]. Мы уже говорили о том, что у глиссеров подъемная сила соз­дается только в результате увеличения давления на днище. При движении крылатых судов 25—30% подъемной силы создается вследствие увеличения давления на крыло снизу и 70—75% в. результате разрежения над крылом. Поэтому на создание подъем­ной силы при движении судов на подводных крыльях затрачи­вается меньше мощности, чем у глиссеров. Кроме того, глиссеры менее мореходны, чем суда на крыльях. Вот почему суда на крыль­ях более перспективны, чем глиссеры[5, стр. 105].

Несмотря на то, что изобретение С. А. де Ламберта было очень многообещающим, суда на подводных крыльях не строили до начала 40-х годов нашего века. Дело в том, что в то время, когда С. А. де Ламберт получил патент на своеизобретение, теория крыла еще не была создана, не было изучено поведение крыла вблизи границы двух сред — воды и воздуха, не были ре­шены остальные вопросы гидродинамики крыльевого устройства[13, стр. 153].

Только после разработки Н. Е. Жуковским и его последователями теории крыла, после работ академиков Н. Е. Кочина, М. В. Келдыша, М. А. Лаврентьева и ряда других отечественных и зарубежных ученых в области гидродинамики, после созданш легких и прочных сплавов, легких и мощных малогабаритных высокооборотных двигателей можно было начать проектирование судов на подводных крыльях, опираясь на достаточно прочные научные и производственные достижения. Конечно, сначала соз­давали малые катера на подводных крыльях, затем более круп­ные суда[12, стр. 132].

Начало строительства судов на подводных крыльях в нашей стране связано с именами Р. Е. Алексеева, Б. А. Зобнина, И. М. Шапкина, А. И. Маскалика. В 1943 г. на заводе «Красное Сормово» был построен первый катер на подводных крыльях, а в 1946 г. катер на жестко закрепленных крыльях, который развивал скорость около 45 уз.[10, стр. 86].

Проект первого теплохода на подводных крыльях был разра­ботан в 1949 г. В 1957 г. началась серийная постройка теплоходов на подводных крыльях типа «Ракета». Затем были созданы разъезд­ной катер «Волга», теплоходы «Метеор», «Спутник», «Чайка», турбоход «Буревестник». В 1961 г. было построено морское судно на подводных крыльях «Комета» и в 1962 г. — «Вихрь»[13, стр. 143].

Первый отечественный газотурбоход «Тайфун» на автомати­чески управляемых подводных крыльях (созданный ленинград­скими корабелами) раз­вивает скорость 44 уз. Он принимает на борт 98—105 пассажиров. У судов на подводных крыльях есть носовые и кормовые крылья. Проследим, как судно выходит на крылья. При увели­чении скорости судна подъемная сила носового крыла растет быстрее, чем подъемная сила кормового. Поэтому первым начи­нает выходить к поверхности носовое крыло, и судно приобретает дифферент на корму. Корпус судна на подводных крыльях в нижней части подобен глиссеру: он имеет резкую килеватость и ост­рые скулы. После того как подъем носового крыла придаст судну дифферент, оно движется как глиссер, и дифферент возрастает. При этом увеличивается угол атаки крыльев и подъем­ная сила. Но вслед за этим начнет быстро возрастать подъемная сила кормового крыла, оно приблизится к поверхности и корпус выйдет из воды[6, стр.97].

Подводное крыло работает по тем же законам, что и воздушное: создает подъемную силу и испытывает сопротивление движению. Гидродинамическое качество подводных крыльев 10—15, т. е. подъемная сила превышает лобовое сопротивление в 10—15 раз.

Чем быстроходнее судно, тем больше подъемная сила подвод­ных крыльев и тем больше они приближаются к поверхности. Но при приближении крыла к поверхности его гидродинамиче­ские характеристики ухудшаются. Следовательно, быстроходные суда, как и суда, предназначенные для плавания па волнении, должны иметь глубокопогруженные крылья. Постоянство подъем­ной силы и глубины погружения подводных крыльев достигается путем поворота крыла вокруг поперечной оси, т. е. в результате изменения угла атаки. Положение крыльев регулируется специ­альной автоматической системой, реагирующей на изменение подъемной силы[10, стр. 68].

Чем больше глубина погружения крыла, выше давление воды, тем при большей скорости судна начинается кавитация. Это еще одно важное обстоятельство, говорящее о том, что подводные крылья быстроходных судов должны быть глубокопогруженными.

К-во Просмотров: 341
Бесплатно скачать Реферат: Речной флот СССР в 60-80е годы ХХ века