Реферат: Релаксорные сегнетоэлектрики в системе твердых растворов
Одним из механизмов диспергирования материалов рассматривалось их растворение и повторное объединение растворенных атомов и молекул в дисперсных частицах. Роль жидкости при этом связывалась с ростом в ней скорости диффузии на много порядков по сравнению с твердым телом. Иногда диспергирование связывается с тепловым возбужденим акустических волн и превышением в области изгиба предела прочности материала [1]. Хотя в целом правильно указывалось, что отщепление коллоидных частиц от поверхности материала осуществляется под действием тепловых колебаний, неверно говорить о самопроизвольном диспергировании. Несмотря на множество работ в этом направлении до настоящего времени не указаны фундаментальные причины измения прочности и пластичности твердых тел при контакте с жидкими средами, что широко используется в технологических поцессах. В целом классический термодинамический подход с использованием феноменологических величин является ограниченным и временным.
Нами развивается существенно новый подход в физике процессов структурообразования в конденсированном состоянии вещества на основе обобщения огромного экспериментального материала, и в первую очередь наиболее однозначно интерпретируемых спектроскопических данных. Фактически речь идет о создании нелинейно-квантовой макрофизики (НКМ), которая является дальнейшим развитием и обобщением квантовой механики сложных систем и физики многоволновых нелинейных резонансных взаимодействий, статистической физики, термо- и упругодинамики. Используемый подход основывается на рассмотрении новых сложных квантовых закономерностей в многочастичных системах и эффектов сильного фонон-электронного взаимодействия [2-4], а также установлении коллективно-квантового характера наблюдаемых макроскопичесих величин (тепло- и электропроводности, вязкости, диэлектрической проницаемости, поверхностного натяжения и др.) и важной роли нелинейных резонансных взаимодействий колебательных мод конденсированных сред. Нелинейно-квантовый характер анализируемых процессов доказывается установлением единства процессов плавления и растворения [4], связанных с возбуждением высших колебательных состояний и их взаимодействием с электронными состояниями и перестройкой последних, что связано с изменением структуры веществ и их свойств.
Возбуждение обертонов и суммарных тонов колебательных мод происходит в результате нелинейного резонансного взаимодействия акустичеких и оптических фононов, что прямо доказано спектроскопически, а также корреляцией теплот фазовых переходов 1-го рода Qm с энергиями оптических фононов [3]. Колебательно индуцированное изменение квантовых электронных свойств веществ доказывается сильным изменением интенсивностей полос высших колебательных мод и наблюдением новых электронных полос ряда диэлектриков и жидких сред в области колебательных мод [2]. В кристаллах Li и Be плавление связано с возбуждением предельных акустических мод νmax с частотами ~250 и 1090 см-1, которые определялись по температурам Дебая. Плавление Na, Ga индуцируется возбуждением двух фононов 2hcνmax на каждый атом. Плавление Al, K происходит в случае возбуждения 3νmax, а Ag, Zr - 6νmax. Для кристалла кремния теплота Qm очень точно равна энергии восьми оптических фононов 520 см-1. Кристалл Zn плавится при сильном возбуждении около 9 оптических фононов, а корунд (Al2O3) - при возбуждении обертона 25νо моды Еg с частотой 378 см-1. Порядок актуального колебательного обертона или суммарного тона, индуцирующего изменение квантового электронного состояния, определяется разностью энергий жидкого и твердого состояний. Контакт с жидкостью повышает нелинейность связанной среды и ведет к появлению изменений подобных плавлению при существенно более низких температурах. В этом случае пластическая деформация возможна при небольших сдвиговых деформациях, а разрушение твердого тела - при напряжениях меньших предела пластичности и прочности в сотни раз.
Важность нелинейных волновых взаимодействий для многих явлений, в частности в эффекте Ребиндера, связана как с повышенной нелинейностью жидкостей и смесей веществ (особенно вблизи эвтектических концентраций), а также дисперсных сред из-за значительной части поверхностных атомов с повышенной ангармоничностью связей. В результате взаимосвязи поведения атомов и электронов сильное возбуждение высших колебательных состояний индуцирует перестройку электронных состояний и изменение межчастичных взаимодействий. С этим связано давно известное явление термического сжатия линейных размеров ряда твердых тел. Это явление иллюстрируется рис.1, где показаны температурные зависимости коэффициентов линейного расширения α. Для ряда металлов, их сплавов, а также стеклообразующих веществ (Se, Te, SiO2) в широкой температурной области наблюдаются отрицательные величины α, то есть реализуется тепловое сжатие а не расширение. Это естес-твенно объясняет суще- ствование высокотем-пературных максиму-мов модулей Юнга Е и сдвига μ. Существова-ние концентрационных максимумов Е и μ (см. рис.2) наглядно демон-стрирует проявление нелинейных механизмов, ведь нелинейные свойства усиливаются для смешанных систем. Аналогичные концентрационные зависимости наблюдаются для скоростей поперечных и продольных акустических волн, плотностей и показателей преломления, поведения теплоемкостей ряда сред. Существует много сплавов (CaCu, TlAu, CaNi, AuSi), для которых значения температуры плавления Tm уменьшаются на многие сотни градусов по сравнению с плавлением их компонентов или сильно повышаются (Ga2Pr, Li3Bi, SbY, UBe13), что связано соответственно с повышением и уменьшением нелинейности среды. Нелинейная концепция объясняет также возрастание прочности нитевидных кристаллов с высокой плотностью дефектов, что способствует повышению нелинейности.
С использованием методов спектроскопии изображений в ближней ИК области (0,8-1,7 мкм) [5] доказана пространственная неоднородность воды и некоторых водных ростворов электролитов, а также обнаружено явление расслоения капилярной воды на два различные состояния. Это позволило поставить общую проблему неоднородного пространственного упорядочения и одновременного существования нескольких квантовых состояний веществ, которые ранее предполагались однородными. Колебательно индуцированные изменения электронных состояний [2-4] приводят к колебательной неустойчивости однородного пространственного состояния вещества. Это позволяет понять превращение моно- и поликристаллических твердых тел без внешних механических напряжений в дисперсные системы, в которых зерна твердой фазы разделены тонкими жидкими прослойками. Диспергирование является по сути колебательно индуцированным электронным переходом для системы твердое тело-жидкость. Наглядно диспергирование веществ можно объяснить энергетически более выгодным упорядочением вещества при отсутствии далекого порядка. В идеальных кристаллах реализации таких типов связей и упорядочения препятствует далекий порядок.
В фундаментальном плане к проблеме изменения прочности и диспергирования твердых тел близки проблемы неоднордного распределения вещества в критической и закритической области и использования закритических химических технологий, а также расслоения растворов жидкостей и тиксотропии. В практическом плане важность рассматриваемой проблематики связана с использованием изменения прочности и пластичности материалов в различных технологических поцессах. Можно надеяться, что раскрытие фундаментальных механизмов таких изменений позволит более полно использовать их на практике, например, для управления свойствами веществ и получения новых веществ с измененными характеристиками, а также добычи метана из газогидратов в глубинах земной коры.
Литература
1.А.В.Перцов, Н.В.Перцов, Эффект Ребиндера, процессы самопроизвольного диспергирования и образования наносистем. В кн. «Коллоидно-химические основы нанонауки», Киев, Академпериодика, 2005, с.340-360.
2. Корниенко Н.Е., Эффекты сильного фонон-электронного взаимодействия 1. Открытие электронных полос нового типа // Вестник Киевского университета, Cерия: физико-математические науки, 2006, випуск № 3, с. 489-500.
3. Корниенко Н.Е. О связи теплот плавления кристаллов с энергиями оптических фононов // Вестник Киевского университета, Cерия: физико-математ. науки, 2004, № 4, с.466-476.
4. Корниенко Н.Е. Квантовые закономерности в водных растворах электролитов. 1. Природа растворимости веществ в воде и гидратации ионов. // Вестник Киевского университета, Cерия: физико-математические науки, 2006, випуск № 2. с. 438-451.
5. Garbe C., Korniyenko N., Smoljar N., Schurr U., Water relations in plant leaves, Lecture Notes in Computer Science, LNCS, Chapter 19, pp 377-401, Springer Verlag, 2003.