Реферат: Решение иррациональных уравнений
При решении уравнений, содержащих радикалы 3-й степени, бывает полезно пользоваться сложением тождествами:
Пример 1.
.
Возведём обе части этого уравнения в 3-ю степень и воспользуемся выше приведённым тождеством:
Заметим, что выражение стоящее в скобках равно 1, что следует из первоначального уравнения. Учитывая это и приводя подобные члены, получим:
Раскроем скобки, приведём подобные члены и решим квадратное уравнение. Его корни и . Если считать (по определению), что корень нечётной степени можно извлекать и из отрицательных чисел, то оба полученных числа являются решениями исходного уравнения.
Ответ: .
Решение 2
Возведём две новые переменные и , тогда ,
.
Заметим, что .
В итоге получим систему уравнений:
Используя первоначальные уравнения системы, преобразуем вторые, заменив первую скобку единицей, а вторую подставим вместо неизвестного у выражение , также полученное из первого .
Приведём подобные члены, раскрыв предварительно скобки и решив полученное квадратное уравнение. Его корни и . Вернёмся теперь к начальной подстановке и получим искомые решения:
Введение нового неизвестного.
Решив эти уравнения, найдём радикалы более высоких степеней, но наиболее часто использовавшийся способ их решения – введение нового(новых) неизвестного.
Пример 2.
Обозначим , тогда
а)
Уравнение примет вид:
Корень не удовлетворяет условию
Ответ: 76.
Методы решения иррациональных уравнений.