Реферат: Решение нелинейных уравнений с одной переменной

Пусть уравнение F(x)=0 имеет единственный корень на отрезке [a, b]. Если отрезок [a, b] достаточно мал, то можно считать, что функция y=F(x) монотонна на этом отрезке и не меняет направление выпуклости. Значит на отрезке [a, b] нет точек максимума и минимума, т.е. . Т.к. направление выпуклости не меняется то и . Получаем четыре вида графиков, которые объединяются в два типа.

I. тип. Условие: , где x- любая точка [a, b].


B

II. тип. Условие: , где x- любая точка [a, b].


Пусть x* - искомый корень уравнения F(x)=0. Заменим кривую графика на хорду АВ. Уравнение прямой, проходящей через точки А (а, F(а)) и В(b, F(b)) имеет вид: , где (x, y) – любая точка прямой АВ. В качестве этой точки возмем точку пересечения хорды с осью ОХ, т.е.


(x1 , 0). Получим или .

Рассмотрим случай, когда кривая графика функции y= F( x) относится к I типу. Через точки А1 и В проводим следующую хорду. Она пересекает ось ОХ в точке х2. Аналогично получаем

,

…………………………………

(1)

Полученная таким образом формула (1) называется формулой метода хорд для кривых I-го типа.

Очевидно, что последовательность значений х1 , х2 , х3 , …,хn стремится к корню уравнения х* , а значит этот корень можно найти с заданной точностью.

? ????????????? ???? ?????? ??? ?????? I-?? ????, ?????? ?????? ???? ??????????? ???? ???? ????? ?. ????, ?????? ????????? ?? II-?? ????, ?? ?????????? ?????? ???? ????? ????? ?. ?????? ? ??????? (1) b ?????????? ?? ?. ??????? ????? ????? ???:

(2)

Если на n-ом шаге, то считается, что необходимая точность е достигнута.

1.6. Уточнение корней методом касательных

При уточнении корней методом касательных все функции делятся на два типа, как и в методе хорд. Рассмотрим кривую I-го типа.

Проведем касательную к графику функции в точке В. Она пересечет ось ОХ в точке х1. Через эту точку проведем прямую перпендикулярную оси ОХ до пересечения с графиком функции. Получим точку А1 . Через неё опять проведем касательную. Получим точку х2 . Продолжая этот процесс, получим последовательность х1 , х2 , х3 , …,хn, сходящуюся к х* .

????????? ??????????? ? ??????? ??????? F(x)=0 ? ????? ?=b ????? ??? . ?.?. ??? ??????????? ?????????? ??? ?? ? ????? (?1 , 0), ?? . ??????

????, ?????? ????????? ?? II-?? ????, ?? ?????? ??????????? ? ??????? ??????? ???? ????????? ? ????? ? ?

?????????? ?????? ???????? ?2 , ?3 , ?,?n ?? ??????? ?? ???? ?????? ? ? ????? ??????? ??????????? ?? ???????

Если на n-ом шаге, то считается, что необходимая точность е достигнута.

1.7. Уточнение корней комбинированным методом хорд и касательных

Методы хорд и касательных дают приближение корня с разных сторон. Поэтому их часто применяют в сочетании друг с другом. В этом случае процесс уточнения корня идет быстрее.

Метод реализуется по следующей схеме:

К-во Просмотров: 270
Бесплатно скачать Реферат: Решение нелинейных уравнений с одной переменной