Реферат: Решение нелинейных уравнений
Вычислить корень уравнения
На отрезке [2,3] с точностью ε=10-4 методами половинного деления, итерации,
касательных.
6 п. Сравнение методов
Эффективность численных методов определяется их универсальностью, простотой
вычислительного процесса, скоростью сходимости.
Наиболее универсальным является метод половинного деления, он гарантирует
определение корня с заданной точностью для любой функции f(x), которая меняет
знак на [a,b]. Метод итерации и метод Ньютона предъявляют к функциям более
жесткие требования, но они обладают высокой скоростью сходимости.
Метод итерации имеет очень простой алгоритм вычисления, он применим для пологих
функций.
Программа по методам половинного деления, итерации и метода Ньютона.
CLS -
a = 2: b = 3: E = .0001
DEF FNZ (l) = 3 * SIN(SQR(l)) + .35 * l - 3.8
F1 = FNZ(a): F2 = FNZ(b)
IF F1 * F2 > 0 THEN PRINT "УТОЧНИТЬ КОРНИ": END
GOSUB 1
x0 = a
IF ABS((-3 * COS(SQR(x))) / (.7 * SQR(x))) > 1 THEN PRINT "НЕ СХОДИТСЯ"
DEF FNF (K) = -(3 * SIN(SQR(x)) - 3.8) / .35
GOSUB 2
x0 = b
F = FNZ(x0)
DEF FND (N) = (3 * COS(SQR(N)) / (2 * SQR(N))) + .35 _
IF F * (-4.285 * (-SQR(x0) * SIN(SQR(x)) - COS(SQR(x))) / (2 * x * SQR(x))) <
then print “не сходится”:end
GOSUB 3