Реферат: Решение систем линейных алгебраических уравнений методом Гаусса и Зейделя
0,1x 1 + 0,1x 2 + 0,2x 3 – 9,1x 4 = 17,08 ,
x 1 = 5,2, x 2 = –4,2, x 3 = 3, x 4 = –1,8.
2.2.3. Описание алгоритма. В переменную n вводится порядок матрицы системы, в переменную e – максимальная абсолютная погрешность. С помощью вспомогательной процедуры ReadSystem в двумерный массив a и одномерный массив b вводится c клавиатуры расширенная матрица системы. Начальное прибижение предполагается равным нулю. Оба массива и переменные n и e передаются функции Seidel . В функции Seidel исследуется сходимость системы, и в том случае если система не сходится, выполнение функции прекращается с результатом false . В ходе каждой итерации вычисляется новое приближение и и абсолютная погрешность. Когда полученная погрешность становится меньше заданной, выполнение функции прекращается. Полученное решение выводится на экран при помощи вспомогательной процедуры WriteX.
2.2.4. Листинг программы и результаты работы.
Uses CRT;
Const
maxn = 10;
Type
Data = Real;
Matrix = Array[1..maxn, 1..maxn] of Data;
Vector = Array[1..maxn] of Data;
{ Процедура ввода расширенной матрицы системы }
Procedure ReadSystem(n: Integer; var a: Matrix; var b: Vector);
Var
i, j, r: Integer;
Begin
r := WhereY;
GotoXY(2, r);
Write('A');
For i := 1 to n do begin
GotoXY(i * 6 + 2, r);
Write(i);
GotoXY(1, r + i + 1);
Write(i:2);
end;
GotoXY((n + 1) * 6 + 2, r);
Write('b');
For i := 1 to n do begin
For j := 1 to n do begin