Реферат: Решение задачи Дирихле методом Монте-Карло
Задача Дирихле в иных терминах может быть сформулирована следующим образом: найти функцию, непрерывную в данной замкнутой области , гармоническую в области и принимающую на ее границе непрерывные заданные значения.
Если , то задача Дирихле удовлетворяет уравнению Пуассона Единственность решения задачи Дирихле и непрерывная запись ее от краевых условий (корректность краевой задачи) вытекают из следующих гармонических функций.
Свойcтво1 (принцип максимума). Гармоническая в ограниченной области функция, непрерывная в замкнутой области , не может принимать внутри этой области значений больших, чем максимум ее значений на границе непрерывные заданные значения.
Доказательство. Пусть – максимум значений на границе . Допустим, что функция в некоторой точке внутри принимает значение , причем .
Составим вспомогательную функцию
,
где – диаметр области . Очевидно, имеем
,
причем при выполняется неравенство
.
Следовательно, функция достигает своего наибольшего значения внутри области в некоторой точке , причем в этой точке будут выполнены необходимые условия для максимума функции:
.
Из соотношения
вытекает, что по крайней мере одна из производных или положительна внутри . Поэтому функция ни в какой конкретной точке области не может иметь максимума, и, следовательно, приходим к противоречию. Таким образом, .
Аналогично доказывается, что , где – наименьшее значение функции на границе .
Следствие. Пусть функция – гармоническая в ограниченной области и непрерывная в замкнутой области . В таком случае справедливо равенство
,
где на , на .
Замечание. Можно доказать более сильное утверждение, что гармоническая в ограниченной и замкнутой области функция, отличная от константы, не принимает внутри наибольшего и наименьшего значений.
Свойство II (единственность решения задачи Дирихле). Задача Дирихле для замкнутой и ограниченной области может иметь лишь единственное решение, т. е. не существует двух непрерывных гармонических функций в замкнутой ограниченной области , принимающих, на границе одни и те же значения.
Доказательство. Допустим, что две функции и гармонические в области , совпадают всюду на ее границе. Рассмотрим функцию
.
Очевидно, что на – гармоническая функция, обращающаяся в нуль на границе. По свойству I эта функция не может принимать внутри значений больше или меньше нуля, следовательно, внутри и .
Замечание. Из свойства II не следует, что задача Дирихле для ограниченной замкнутой области имеет решение; это свойство лишь утверждает, что если существует решение задачи Дирихле для области , то оно единственно.
Можно доказать, что если область выпуклая, т. е. вместе с двумя своими точками содержит соединяющий их отрезок, и граница ее действительно имеет решение (теорем Неймана).
Свойство III (корректность задачи Дирихле). Решение задачи Дирихле для замкнутой и ограниченной области непрерывно зависит от граничных данных.
Доказательство. Допустим, что и – решения задачи Дирихле, соответственно принимающее на границе значение и .
Пусть всюду на выполнено неравенство
,
где – произвольное малое положительное число.