Реферат: Решение задачи Коши для систем обыкновенных дифференциальных уравнений методом Рунге-Кутта-Мерсо

Где j=1N-номер каждой зависимой переменной yj , x-независимая переменная .

Решение системы (1) при заданных начальных условиях

x = x 0 ,

y 1 ( x 0 )= y 10 ,…, (2)

y 2 ( x 0 )= y 20 ,

yN ( x 0 )= yN 0

сводиться к нахождению зависимостей (интегральных кривых) y 1 ( x ),…, y 2 ( x ), yN ( x ), проходящих через точки ( x 0 , y 10 ), ( x 0 , y 20 ),…, ( x 0 , yN 0 ). Задача Коши сводиться к интегрированию дифференциальных уравнений. Порядок метода численного интегрирования при этом определяется и порядок метода решения.

1.2. Метод Рунге-Кутта-Мерсона

Автоматическое изменение шага в ходе решения систем дифференциальных уравнений необходимо, если решение требуется получить с заданной точностью. При высокой точности (погрешность ) и решении в виде кривых с сильно различающейся крутизной автоматическое изменение шага обеспечивает уменьшение общего числа шагов в несколько раз, резко уменьшается вероятность числовой неустойчивости, даёт более равномерное расположение точек графика кривых (решений) при их выводе на печать. Данный метод обеспечивает приближённую оценку погрешностей на каждом шаге интегрирования. Погрешность интегрирования имеет порядок h 5 . Этот метод реализуется следующим алгоритмом: Задаём число уравнений N, погрешность ε= E , начальный шаг интегрирования h = H и начальное значение y10 ,…,yN 0 . С помощью пяти циклов с управляющей переменной J=1,2,..,N вычисляем коэффициенты:

(3)

(4)

(5)

(6)

(7)

Находим (в последнем цикле) значение (8):

(8)

И погрешность

(9)

Проверяем выполнения условий

(10)

(11)

Если условие (10) не выполняется, то делим шаг h на 2 и повторяем вычисления. Если это условие выполняется и выполняется условие (11), значение xi +1 = xi + h и Yj ( i +1) , то считаем, что решение системы дифференциальных уравнений найдено с заданной точностью. Если условие (11) не выполняется , шаг h увеличивается вдвое и вычисления повторяются.

К-во Просмотров: 325
Бесплатно скачать Реферат: Решение задачи Коши для систем обыкновенных дифференциальных уравнений методом Рунге-Кутта-Мерсо