Реферат: Резины, стойкие к старению

Минимальное сопротивление термическому старению имеют резины, вулканизованные серой. Применение эффективных систем вулканизации позволяет значительно замедлить снижение εp и fp после старения, особенно в резинах, содержащих минеральные наполнители.

Высоким сопротивлением термическому старению обладают пероксидные вулканизаторы с минеральными наполнителями. Добавление небольшого количества серы и сульфенамида несколько улучшает механические свойства этих резин, но уменьшает их сопротивление термическому старению.

Согласно экспериментам, резины на основе БНК, одна из которых вулканизована ТМТД и оксидом цинка, а вторая оксидом кадмия и ДЭДТК кадмия, имеют следующие показатели: fp - 16,4 и 15,8 МПа, εp -290 и 320%, Δfp (воздух, 150°С, 70 ч) - 45 и 103%, Δεp (воздух, 150 °С, 70 ч)-11 и 78%. При этом вулканизат, который не содержал антиоксиданта (диоктилдифениламин), разрушался после старения в аналогичных условиях.

Применение «кадматной» системы вулканизации позволяет повысить рабочую температуру резин на основе БНК на воздухе от 120 до 150°С, но широкое промышленное применение этой системы, по-видимому, затруднено из-за ее токсичности.

Обычно минеральные наполнители обеспечивают более высокое сопротивление термическому старению резин на основе БСК по сравнению с техническим углеродом. Степень влияния наполнителей зависит от состава резиновой смеси и условий старения.

Резины на основе хлоропренового каучука (ПХП)

При термическом старении резин из ПХП происходит сшивание макромолекул, приводящее к повышению fε и Н, снижению εp . Энергия активации, рассчитанная по скорости изменения fε , fp , εp , составляет 84 ± 8 кДж/моль. Резины на основе каучуков меркаптанного регулирования более термостойки, чем резины из серных ПХП. Термостойкость резин из ПХП возрастает при добавлении ББК. В качестве наполнителей применяют технический углерод, но повышения термостойкости можно достигнуть и при использовании диоксида кремния; рекомендуются также минеральные наполнители. В качестве мягчителей применяют полиэфиры, сульфоэфиры, рубракс, АСМГ, кумарон-инденовую и нефтеполимерную смолы. Термостойкость может повышаться при добавлении в резиновую смесь парафинового масла и дифениламина. Предпочтительно использование алкилированных диаминов и фенольных антиоксидантов, а также смесей различных антиоксидантов, и дитиокарбаматов.

Резины на основе органических оксидов

Повышенная термостойкость резин на основе ЭХГК и ПОК обусловлена отсутствием ненасыщенности в молекулярной цепи этих каучуков. При близкой топливомаслостойкости резины из ЭХГК значительно более термостойки на воздухе, чем резины из БНК; при 150°С резины из БНК (независимо от содержания АН), вулканизованные ТМТД, становятся хрупкими после старения в течение 240ч.

В аналогичных условиях вулканизаты БНК, содержащие оксид кадмия, разрушаются через 120ч, а резины из ЭХГК-Г и ЭХГК-С сохраняют работоспособность в течение 600-1000 и 300-500 ч соответственно. Однако, резины из ЭХГК менее термостойки, чем пероксидные вулканизаты БНК, содержащие связанный антиоксидант.

При повышенной температуре ЭХГК-Г и ЭХГК-С подвержены значительной деструкции с одновременным отщеплением хлористого водорода.

Резины из ЭХГК-С, вулканизованные ЭТМ, более термостойки при использовании двухосновных фосфита или фталата свинца, чем свинцового сурика. При этом образцы, содержащие оксид цинка, полностью размягчаются при 150°С. Повышение содержания свинцового сурика от 8 до 17 масс. ч. предотвращает размягчение резины из ЭХГК-Г, вулканизованной этилентиомочевиной (ЭТМ) при старении на воздухе при 150°С в течение 1000ч.

Резины на основе этиленпропиленовых каучуков (ЭПК и ЭПТ)

Сопротивление старению при 120˚С резин на основе ЭПК, вулканизированных одинаковым количеством органических пероксидов, не зависит от типа пероксидов.

Добавление небольшого количества серы улучшает механические показатели пероксидных вулканизатов, но несколько снижает их термостойкость. Установлено, что для эксплуатации резин из ЭПК при 80˚С применение антиоксидантов необязательно в интервале температур от 80 до 110°С эффективная защита обеспечивается сочетанием ПТДХ и оксида цинка, выше 110°С дополнительно следует ввести МБИ. Так, резина, содержащая ПТДХ, после старения при 177 °С в течение 168 ч становится хрупкой; значение Δfp резины, содержащей также оксид цинка, после старения в течение 168 и 336 ч составляет 75 и 25% соответственно; при добавлении МБИ значение Δfp после старения в течение 672 и 840ч составляет 45 и 33%. По-видимому, ПТДХ блокирует пероксидные макрорадикалы и препятствует автокаталитическому окислению, а МБИ разлагает гидропероксиды. Возможно, оксид цинка подавляет термоокислительную дeструкцию, вызываемую остатком катализатора, или же продукты взаимодействия оксида цинка и МБИ являются эффективными антиоксидантами.

Считают, что серосодержащие вулканизующие системы способны обеспечить работоспособность резин из ЭПТ при температурах не выше 150°С; для применения этих резин при более высокой температуре необходима вулканизация органическим пероксидом. Пероксидные вулканизаты ЭПТ оказались более термостойкими, чем пероксидные вулканизаты ЭПК, но увеличение степени непреде

К-во Просмотров: 374
Бесплатно скачать Реферат: Резины, стойкие к старению