Реферат: Розрахунок редуктору
yв2 = 0,5 ya (U2 + 1);
yв2 = 0,5 • 0,3 (8,2 + 1) = 1,4
Залежність між Kb1, Kb2 і yв1, yв2 наведена у табл. 3.
Таблиця 3.
yв1, yв2 | 0,2 | 0,4 | 0,6 | 0,8 | 1,0 | 1,2 | 1,4 | 1,6 | 1,8 |
Kb1 | 1,02 | 1,05 | 1,08 | 1,11 | 1,15 | 1,19 | 1,23 | 1,28 | 1,33 |
Kb2 | 1,01 | 1,02 | 1,03 | 1,05 | 1,07 | 1,10 | 1,13 | 1,16 | 1,19 |
Kb1 = 1,33
Kb2 = 1,13
Таблиця 3 складана на основі графіків залежності із [3], вид яких дозволяє лінійно інтерполювати дані цієї таблиці. Отримані міжосьові відстані треба далі збільшити до ближчого стандартного значення за табл.4.
Таблиця 4.
1-й ряд | 50; 53; 80; 100; 125; 160; 200; 250; 315; 400; 500; 630 |
2-й ряд | 50; 56; 63; 71; 80; 90; 100; 110; 125; 140; 180; 225; 280;355; 450; 560; 710 |
aw1 = 200
aw2 = 450
1.8 Визначення модулів зачеплення зубчастих пар редуктора.
Модулі зачеплення можливо визначити за формулами:
(12)
Обчислені максимальні і мінімальні значення надають інтервал, серед якого треба узяти який більше стандартне значення за допомогою табл. 5.
Таблиця 5.
Модулі m; (мм) | 1-й ряд | 1; 1,5; 2; 3; 4; 5; 6; 8; 10 |
2-й ряд | 1,25; 1,75; 2,25; 2,75; 3,5; 5,5; 7; 9. |
m1 = 2
m2 = 5,5
1.9 Визначення числа зубців зубчастих пар та остаточних значень міжосьової відстані.
Число зубців косозубої шестерні (перший ступень) знаходять за формулою:
Z11 = (13)
Z11 = = 16,6≈17
де b - кут нахилу зубців, який дорівнює b=15; (cos 15 = 0,966).
Число зубців прямозубої шестерні (другий ступінь) знаходять за формулою:
Z21 =
Z21 = =17,7