Реферат: Розвиток творчих здібностей учнів на уроках математики 2

РОЗВИТОК ТВОРЧИХ ЗДІБНОСТЕЙ УЧНІВ

НА УРОКАХ МАТЕМАТИКИ

Коли йдеться про зміст шкільного курсу математики, то, звичайно, мають на увазі засвоєння учнями певної системи математичних знань, умінь і на­вичок. Але не можна зводити все математичне навчання в шкоді до передачі учням визначеної суми знань і навичок. Це обмежувало б роль математики в загальній освіті. Тому перед школою стоїть важливе завдання математич­ного розвитку учнів.

Математичні здібності — це здатність утворювати на математичному матеріалі узагальнені, згорнуті, гнуч­кі й обернені асоціації та їх системи. До складових ма­тематичних здібностей слід віднести:

* здатність до формалізації математичного матеріа­лу, відокремлення форми від змісту, абстрагування від реальних ситуацій і їх кількісних відношень та просторових форм; опе­рування структурами відношень і зв'язків;

* здатність до узагальнен­ня матеріалу;

* здатність до оперування числовою і знаковою символікою;

* здатність до логічних міркувань, пов'язаних з потребою доводити, ро­бити висновки; здатність до скорочення процесу міркувань;

* здатність до переходу від прямого до оберненого ходу думки;

* гнучкість мислення неза­лежно від впливу шаб­лонів.

Математика сприяє вироб­ленню особливого виду пам'яті — пам'яті, спрямо­ваної на узагальнення, тво­рення логічних схем, фор­малізованих структур, ви­ховує здатність до просто­рових уявлень.

Наявність математичних здібностей в одних учнів і недостатня розвинутість їх в інших вимагає від учи­теля постійного пошуку, шляхів формування і роз­витку таких здібностей у школярів.

Рівнева диференціація з урахуванням психології математичних здібностей учнів збільшує можливості роботи вчителя. Такий підхід створює умови для розвитку здібностей учнів, які мають природжені задатки до занять математикою, і забезпечує посиль­ною роботою учнів, які не мають та­ких задатків. Виконуючи посильні за­вдання, учень отримує впевненість у своїх силах.

Усі задачі я поділяю на три типи:

1. Задачі, які розв'язую для кращогозасвоєння теорії;

2. Тренувальні вправи, мета яких - виробити навички;

3. Задачі, за допомогою яких розви­ваю математичні здібності учнів.

Розв'язування задач - це робота дещо незвичайна, адже це розумова

та. А щоб навчитися будь-якій роботі, треба спочатку добре вивчити той матеріал, над яким доведеться працюва­ти, ті інструменти, з допомогою яких буде виконуватись робота.

Отож, для того щоб навчити учнів розв'язувати задачі, я пропоную їм розібратись в тому, що вони собою являють, як побудовані, з яких частин складаються, що потрібно знати, щоб розв'язати ту чи іншу задачу.

Учні п'ятого класу вже знають, що під математичною задачею розумі­ють будь-яку вимогу обчислити, по­будувати, довести що-небудь, пов'я­зане з числовими величинами або геометричними фігурами. Арифме­тичною задачею називають вимогу знайти числове значення деякої вели­чини, якщо дано числове значення інших величин і залежність, яка зв'язує їх як між собою, так і з шука­ною величиною. (У початкових класах в основному розглядаються так звані сюжетні задачі, в яких описується кількісна сторона деяких явищ. Сю­жетну задачу, для розв'язання якої треба виконати дві чи більше пов'яза­них між собою арифметичних дій, називають складеною. Щоб розв'яза­ти складену задачу, пропоную учням спочатку скласти план розв'язування. План складається на основі аналізу задачі, який проводять від числових даних або від запитання.

Аналізу задачі передує ґрунтовне вивчення умови і запитання задачі.

Наприклад, задача. Велосипедист їхав 4 години із швидкістю 12 км/год. Йому залишилося проїхати на 16 км менше, ніж він проїхав. Яку відстань потрібно було проїхати велосипеди­сту?

Аналіз від числових даних. Відомо, що велосипедист їхав 4 години із швидкістю 12 км/год. За цими дани­ми можна дізнатися, яку відстань проїхав велосипедист. Для цього тре­ба швидкість помножити на час. Зна­ючи відстань, яку вже проїхав вело­сипедист, і те, що залишилося проїха­ти на 16 км менше, можна знайти відстань, яку залишилося проїхати. Для цього відстань, яку вже проїхав велосипедист, треба зменшити на16 км. Знаючи, скільки кілометрів за­лишилося їхати, можна знайти весь шлях. Для цього треба виконати дода­вання знайдених відстаней.

Аналіз від запитання. У задачі треба знайти весь шлях, який має проїхати велосипедист. Ми не можемо одразу відповісти на це запитання, бо не відомо, скільки велосипедист вже проїхав і скільки йому залишилося їхати. Щоб знайти пройдений шлях, треба знати швидкість і час руху. Це в задачі відомо. Помножимо швид­кість на час і дізнаємося про пройде­ний шлях. Відстань, яку велосипе­дист ще має проїхати, можна також знайти. Для цього знайдену відстань треба зменшити на 16 км. Отже, план розв'язування задачі такий:

1. Скільки кілометрів проїхав вело­сипедист за 4 години?

2. Скільки кілометрів велосипедисту залишилося проїхати?

3. Яку відстань мав проїхати велоси­педист?

Отже, підвищення ефективності на­вчання математики можна досягти, продуктивно реалізуючи всі дидак­тичні функції математичних задач.

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 176
Бесплатно скачать Реферат: Розвиток творчих здібностей учнів на уроках математики 2