Реферат: Сборка полупроводниковых приборов и интегральных микросхем

В результате этого уменьшается прочность сплавного соедине­ния, увеличиваются электрическое и тепловое сопротивления кон­такта и снижается надежность полученной арматуры.

Существенное влияние на процесс эвтектического сплавления оказывает состояние поверхностей исходных соединяемых элемен­тов. Наличие загрязнений на этих поверхностях приводит к ухуд­шению смачивания контактирующих поверхностей жидкой фазой и неравномерному растворению.

Приклеиваниеэто процесс соединения элементов друг с дру­гом, основанный на клеящих свойствах некоторых материалов, которые позволяют получать механически прочные соединения между полупроводниковыми кристаллами и основаниями корпусов (металлическими, стеклянными или керамическими). Прочность склеивания определяется силой сцепления между клеем и склеива­емыми поверхностями элементов.

Склеивание различных элементов интегральных схем дает воз­можность соединять самые разнообразные материалы в различных сочетаниях, упрощать конструкцию узла, уменьшать его массу, снижать расход дорогостоящих материалов, не применять припоев и эвтектических сплавов, значительно упрощать технологические процессы сборки самых сложных полупроводниковых приборов и ИМС.

В результате приклеивания можно получать арматуры и слож­ные композиции с электроизоляционными, оптическими и токопроводящими свойствами. Присоединение кристаллов к основанию корпуса с помощью процесса приклеивания незаменимо при сборке и монтаже элементов гибридных, монолитных и оптоэлектронных схем.

При приклеивании кристаллов на основания корпусов применя­ют различные типы клеев: изоляционные, токопроводящие, светопроводящие и теплопроводящие. По активности взаимодействия между клеем и склеиваемыми поверхностями различают полярные (на основе эпоксидных смол) и неполярные (на основе полиэти­лена).

Качество процесса приклеивания в значительной степени зави­сит не только от свойств клея, но и от состояния поверхностей склеиваемых элементов. Для получения прочного соединения необ­ходимо тщательно обработать и очистить склеиваемые поверхно­сти. Важную роль в процессе склеивания играет температура. Так, при склеивании элементов конструкций, которые не подвергаются в последующих технологических операциях воздействию высоких температур, можно использовать клеи холодного отверждения на эпоксидной основе. Для приклеивания кремниевых кристаллов к металлическим или керамическим основаниям корпусов обычно используют клей ВК-2, представляющий собой раствор кремнийорганической смолы в органическом растворителе с мелкодиспергированным асбестом в качестве активного наполнителя или ВК32200, в котором в качестве наполнителя используют стекло или кварц.

Технологический процесс приклеивания полупроводниковых кристаллов проводят в специальных сборочных кассетах, обеспе­чивающих нужную ориентацию кристалла на основании корпуса и необходимое прижатие его к основанию. Собранные кассеты в зависимости от используемого клеящего материала подвергают определенной термической обработке или выдерживают при ком­натной температуре.

Особые группы составляют электропроводящие и оптические клеи, используемые для склеивания элементов и узлов гибридных и оптоэлектронных ИМС. Токопроводящие клеи представляют собой композиции на основе эпоксидных и кремнийорганических смол с добавлением порошков серебра или никеля. Среди них наи­более широкое распространение получили клеи АС-40В, ЭК-А, ЭК-Б, К-3, ЭВТ и КН-1, представляющие собой пастообразные жидкости с удельным электрическим сопротивлением 0,01 0,001 Ом-см и диапазоном рабочих температур от 60 до +150°С. К оптическим клеям предъявляют дополнительные требования по значению коэффициентов преломления и светопропускания. Наи­более широкое распространение получили оптические клеи ОК.-72 Ф, ОП-429, ОП-430, ОП-ЗМ.

Присоединение выводов

В современных полупроводниковых приборах и интегральных мик­росхемах, у которых размер контактных площадок составляет несколько десятков микрометров, процесс присоединения выводов является одним из самых трудоемких технологических операций.

В настоящее время для присоединения выводов к контактным площадкам интегральных схем используют три разновидности сварки: термокомпрессионную, электроконтактную и ультразву­ковую.

Термокомпрессионная сварка позволяет присоединять электри­ческие выводы толщиной несколько десятков микрометров к оми­ческим контактам кристаллов диаметром не менее 2050 мкм, причем электрический вывод можно присоединить непосредственно к поверхности полупроводника без промежуточного металлическо­го покрытия следующим образом. Тонкую золотую или алюминие­вую проволоку прикладывают к кристаллу и прижимают нагретым стержнем. После небольшой выдержки проволока оказывается плотно сцепленной с поверхностью кристалла. Сцепление происхо­дит вследствие того, что даже при небольших удельных давлениях, действующих на кристалл полупроводника и не вызывающих его разрушения, локальное давление в микровыступах на поверхности может быть весьма большим. Это приводит к пластической дефор­мации выступов, чему способствует подогрев до температуры ниже эвтектической для данного металла и полупроводника, что не вы­зывает каких-либо изменений в структуре кристалла. Происходя­щая деформация (затекание) микровыступов и микровпадин обус­ловливает прочную адгезию и надежный контакт, вследствие ван-дер-ваальсовых сил сцепления, а с повышением температуры меж­ду соединяемыми материалами более вероятна химическая связь. Термокомпрессионная сварка имеет следующие преимущества:

  1. соединение деталей происходит без расплавления свариваемых материалов;

  2. удельное давление, прикладываемое к кристаллу, не приводит к механическим повреждениям полупроводникового материала;

  3. соединения получают без загрязнений, так как не используют припои и флюсы.

К недостаткам следует отнести малую производительность процесса.

Термокомпрессионную сварку можно осуществлять путем сое­динений внахлест и встык. При сварке внахлест электрический проволочный вывод, как отмечалось, накладывают на контактную площадку кристалла полупроводника и прижимают к нему специ­альным инструментом до возникновения деформации вывода. Ось проволочного вывода при сварке располагают параллельно плос­кости контактной площадки. При сварке встык проволочный вывод приваривают торцом к контактной площадке. Ось проволочного вывода в месте присоединения перпендикулярна плоскости кон­тактной площадки.

Сварка внахлест обеспечивает прочное соединение кристалла полупроводника с проволочными выводами из золота, алюминия, серебра и других пластичных металлов, а сварка встыктолько с выводами из золота. Толщина проволочных выводов может со­ставлять 15-100 мкм.

Присоединять выводы можно как к чистым кристаллам полу­проводника, так и к контактным площадкам, покрытым слоем напылённого золота или алюминия. При использовании чистых поверхностей кристалла увеличивается переходное сопротивление контакта и ухудшаются электрические параметры приборов.

Элементы, подлежащие термокомпрессионной сварке, проходят определенную технологическую обработку. Поверхность кристалла полупроводника, покрытую слоем золота или алюминия, обезжи­ривают.

Золотую проволоку отжигают при 300600°С в течение 520 мин в зависимости от способа соединения деталей. Алюминие­вую проволоку протравливают в насыщенном растворе едкого нат­ра при 80°С в течение 12 мин, промывают в дистиллированной воде, и сушат.

Основными параметрами режима термокомпрессионной сварки являются удельное давление, температура нагрева и время сварки, Удельное давление выбирают в зависимости от допустимого на­пряжения сжатия кристалла полупроводника и допустимой дефор­мации материала привариваемого вывода. Время сварки выбирают экспериментальным путем.

Относительная деформация при термокомпрессионной сварке

,

где dдиаметр проволоки, мкм; bширина соединения, мкм.

Давление на инструмент определяют, исходя из распределения напряжений на стадии завершения деформации:

,

г
де Aкоэффициент, характеризующий изменение напряжений в процессе деформации проволоки; fприведенный коэффициент трения, характеризующий трение между инструментом, проволо­кой и подложкой; относительная деформация; предел те­кучести материала проволоки при температуре деформации; d диаметр проволоки; Dдиаметр прижимного инструмента, рав­ный обычно (2ч3)d.

Рис. 2. Номограмма для выбора режимов термокомпрессионной сварки:

К-во Просмотров: 415
Бесплатно скачать Реферат: Сборка полупроводниковых приборов и интегральных микросхем