Реферат: Сегментация изображений гистологических объектов
5. Тема сегментации медицинских изображений в настоящее время является актуальной и очень важна в диагностических и научных исследованиях.
На основе результатов анализа выдвигается гипотеза: для каждого класса объектов можно определить алгоритм сегментации, позволяющий получить результат, удовлетворяющий исследователей гистологических препаратов.
Вторая глава посвящена сегментации гистологических объектов на полутоновых изображениях.
Глава начинается с классификации гистологических объектов для определения наиболее эффективного метода сегментации. В ходе классификации определяются три основных класса объектов: площадные (клетки, ядра клеток, сосуды и волокна в поперечном срезе), протяженные объекты (сосуды и волокна в продольном срезе), мелкие контрастные объекты (ядрышки, клеточные включения, артефакты) (табл. 1).
Таблица 1
Таблица классификации гистологических объектов и методов их сегментации для каждого класса
Вид объекта | Характеристика изображения | Равномерный фон | Неравномерный фон |
Площадные | Отдельно лежащие объекты одного типа | Пороговая | Методы математической морфологии |
Объекты | Объекты, сопровождаемые объектами другого типа | Пороговая сегментация | Методы объединения областей |
Протяженные объекты | Произвольное изображение | Пороговая сегментация | Морфологическая сегментация, основанная на утоньшении |
Мелкие контрастные объекты | Произвольное изображение | Пороговая сегментация | Пороговая сегментация |
Используя характеристику протяженных объектов, для получения результата можно применять методы математической морфологии. Для выделения средней линии, соответствующей протяжённым объектам, чаще всего применяется полутоновое утоньшение изображения. Поэтому в диссертации был разработан алгоритм полутонового утоньшения, ориентированный на обработку изображений гистологических препаратов со сложным фоном, у которых на разных участках изображения меняются полутоновые характеристики.
Утоньшение изображения осуществляется за четыре прохода, а именно для верхнего, нижнего, правого и левого края. За каждый из четырех проходов значение пикселя изменяется по условиям:
1) p2 <x AND p6 ³x AND (p1 <x AND p4 ³x OR p3 <x AND p0 ³x OR p0 ³x AND p4 ³x);
2) p6 <x AND p2 ³x AND (p5 <x AND p0 ³x OR p7 <x AND p4 ³x OR p4 ³x AND p0 ³x);
3) p4 <x AND p0 ³x AND (p3 <x AND p6 ³x OR p5 <x AND p2 ³x OR p2 ³x AND p6 ³x);
4) p0 <x AND p4 ³x AND (p7 <x AND p2 ³x OR p1 <x AND p6 ³x OR p6 ³x AND p2 ³x),
где номера пикселей соответствуют рис. 1.
P3 | P2 | p1 |
p4 | Х | p0 |
p5 | P6 | p7 |
Рис. 1 Окрестность пикселя X
В работе предлагаются три варианта изменения пикселя, удовлетворяющего вышеуказанным условиям:
1. Последовательная обработка полутоновых слоёв: последовательное утоньшение каждого полутонового уровня как бинарного изображения от максимального к минимальному.
2. Одновременная обработка полутоновых слоёв: изменяемый пиксель уменьшается на единицу (рис. 2).
3. Одновременная обработка с максимизацией значения пикселя: значению изменяемого пикселя присваивается значение максимального соседа из его окружения, полутоновая величина которого не превышает величину изменяемого пикселя.
Способ изменения пикселя зависит от контрастности изображения. Первым способом достигается идеальный результат для любых изображений, но он медленный. Третий способ – быстрый, но результат корректен только для контрастных изображений. Для большинства изображений более эффективно использовать второй способ (рис. 2).
Бинаризация скелета проводится за один проход изображения. Если обрабатываемый пиксель имеет хотя бы одного из четырёх соседей (p0, p2, p4, p6) меньше его или всех диагональных восьмисоседей меньше его, то значение пикселя приравнивается к 1 , в противном случае – к 0:
If (X>p0 OR X>p4 OR X>p2 OR X>P6) OR (X>p1 AND X >p3 AND X>p5 AND X>p7) THEN X=1ELSE X=0.
Учитывая особенности протяжённых объектов при слабом оптическом увеличении, бинаризированный скелет соответствует выделяемым сосудам или волокнам.
При больших увеличениях толщина протяженных объектов начинает играть существенную роль, поэтому для этого случая был разработан отдельный алгоритм сегментации. Особенность алгоритма заключается в наличии двух параллельных ветвей: обработка самого изображения и его градиента. В результате утоньшения градиента изображения получаются области для обработки, соответствующие либо фону, либо объекту. По соответствию полученного скелета изображения областям определяются протяженные объекты (рис 3).
В качестве развития этого алгоритма предлагается алгоритм идентификации сосудов или волокон, который использует области и скелет, полученные с помощью предыдущего алгоритма. Он выполняется с помощью отслеживания протяженного объекта и классификации областей на три класса (пересечения, разветвления и продолжения), которая проводится с помощью анализа точек пересечения скелета с границами области.
Выбор метода сегментации для площадных объектов зависит от соотношения фона и полутоновых характеристик объектов. Для контрастных изображений лучше всего использовать алгоритмы пороговой сегментации, но в случае слабоконтрастных изображений они не позволяют получить качественный результат. Если фон неравномерен, а изображение включает отдельно лежащие объекты одного типа, и, кроме того, полутоновая величина для пикселей фона меняется равномерно и не делает резких скачков, хорошие результаты получаются при применении морфологической сегментации. В основе разработанного алгоритма лежит полутоновое утоньшение морфологического градиента, сопровождаемое операцией обрезания хвостов на каждую итерацию, которая позволяет получить замкнутые контуры, ограничивающие области, соответствующие объектам. Результаты, полученные с помощью этого метода, соответствуют выделяемым гистологическим объектам (рис. 4).
а) б) в) г)
Рис. 4.Морфологическая сегментация клетки нейрона: а) исходное изображение; б) результат утоньшения полутонового градиента; в) результат заливания; г) результирующее бинарное изображение клетки
В случае, когда в изображении объектов и фона полутоновая величина пикселей принимает любое значение, для сегментации разработан алгоритм объединения областей (рис 5). Отсутствие стадий “засевания”, роста и разделения областей приводит к выигрышу в скорости по сравнению с традиционными алгоритмами роста областей.
Объединение областей происходит при следующих условиях.
1. Разница дисперсии для полутоновой величины не должна превышать заданного значения, определяющего отличия клетки от ткани.
2. Среднее значение полутоновой величины каждой области не должно выходить за пределы, ограниченные дисперсией другой области.
а) б) в) г) д)
Рис 5. Сегментация клеток методом объединения областей: а) исходное изображение, б) морфологический градиент, в) утоньшение морфологического градиента, г) объединение областей, д) результирующее бинарное изображение клеток