Реферат: Сегментация изображений гистологических объектов
3. Разработан алгоритм полутонового утоньшения объектов на слабоконтрастных изображениях гистологических объектов. Основным отличием алгоритма является то, что операция утоньшения начинает обрабатывать изображение с точек объектов, имеющих для своего окружения максимальные яркостные характеристики. Эта особенность позволяет обрабатывать и получать качественный результат на изображениях со сложным фоном с меняющимися яркостными характеристиками, особенно для изображений гистологических препаратов.
4. Разработан алгоритм сегментации и отслеживания сосудов или волокон при больших оптических увеличениях. Предложенный алгоритм, основанный на анализе областей, полученных с помощью утоньшения перепадов яркости, позволяет получить качественный результат, пригодный для дальнейшей обработки. Кроме того, для данного метода сегментации предлагается метод отслеживания, также основанный на анализе выделенных областей. Эти особенности позволяют повысить скорость и качество обработки.
5. Разработан алгоритм морфологической сегментации площадных гистологических объектов. Алгоритм выделяет такие объекты как клетки, сосуды и волокна в поперечном сечении на изображениях гистологических препаратов с фоном, яркостные характеристики которого меняются, а текстура не выражена.
6. Разработан алгоритм сегментации клеток методом объединения областей. Он ориентирован на обработку изображений со сложным фоном, у которого меняются яркостные характеристики и присутствует текстура, состоящая из ложных объектов и артефактов. Метод объединения областей существенно медленней морфологической сегментации, но он позволяет определять объекты даже тогда, когда перепады уровней яркости объектов такие же, как и у окружающего их фона. Отсутствие стадий “засевания”, роста и разделения областей приводит к выигрышу в скорости по сравнению с традиционными алгоритмами роста областей.
7. Предлагается система координат описания цвета, предназначенная для сохранения цветности при работе методов математической морфологии на изображениях гистологических препаратов. При представлении изображения в этой координатной системе основная часть обработки проходит по одной координатной оси, отображающей полутоновые свойства изображения. Это позволяет улучшить качество и ускорить обработку цветных изображений гистологических препаратов.
Полученные в диссертационной работе результаты предназначены для реализации в автоматических системах анализа гистологических препаратов и могут использоваться при традиционной обработке и анализе гистологических объектов.
Статьи в сборниках и журналах
1. Недзьведь А.М., Абламейко С.В. Утоньшение полутоновых изображений путем последовательного анализа бинарных слоёв // Цифровая обработка изображений.– Минск: Институт технической кибернетики АНБ 1997.– Вып.1. – С.137-147.
2. Морфометрия изменений онтогенеза у крыс, вызванных малыми дозами ионизирующей радиации. Мельниченко Э.М., Чешко Н.Н., Берлов Н.Н. и др. // Здравоохранение Беларуси. – 1997.– №10. – С.19-21.
3. Недзьведь А.М., Абламейко С.В. Полутоновое утоньшение цветного изображения // Цифровая обработка изображений.– Минск: Институт технической кибернетики НАН Беларуси. – 1998.– Вып. 2.– С.41-52.
4. Недзьведь А.М., Абламейко С.В. Сегментация изображений волокон и сосудов при большом увеличении // Цифровая обработка изображений.– Минск: Институт технической кибернетики НАН Беларуси. – 1999.– Вып. 3. – С.167-176.
Тезисы докладов и материалы конференций
5. Недзьведь А.М., Абламейко С.В. Представление цветных изображений для математической морфологии // Компьютерный анализ данных и моделирование. Сб. науч. статей V междунар. конф., под ред. проф. С.А.Айвазяна и проф. Ю.С.Харина. – Минск: БГУ. – 1998.– Ч. 4: К-Я. – С. 86-95.
6. Image analysis system for quantitative morphology task. Nalibotsky B., Nedzved A., Rubenchik A., e.a. // Program and abstract book; 8th International Symposium on Diagnostic Quantitative Pathology. – Amsterdam, 1994. – P.181-182.
7. Компьютерная обработка изображений сосудов и волокон биологических препаратов и измерение их геометрических характеристик. Недзьведь A.М., Ильич Ю.Г., Карапетян Г.М. и др.//Тез. докл. третьей науч. конф. по распознаванию образов и обработке информации.
– Минск, 1995. – С.110-113.
8. Nedzved A., Ablameyko S. Thinning of gray scale medical images.// System and signals in Intelligent Technologies. Minsk, 1998. – P.236-240.
9. Недзьведь А.М., Абламейко С.В. Сегментация клеток на гистологических препаратах для световой микроскопии // Сб. мат. докл. 5-й междунар. конф. по распознаванию образов и обработке информации PRIP-99. – Минск, 1999. – Ч. 2. – С. 143-148.
10. Аппаратная и программная поддержка системы обработки и анализа изображений “BIOSCAN-AT”. Налибоцкий Б.В., Недзьведь А.М., Рубенчик А.Я. и др.// Тез. докл. науч.-техн. конф. по компьютерной графике и анимации. – Минск, 1993. – С. 65-68.
11. Недзьведь А.М. Особенности системы пирамидальных нейронов головного мозга поля 10 // Тез. докл. республиканской науч. конф. молодых ученых и студентов “Актуальные проблемы современной медицины”. – Минск: МГМИ, 1997. – С.83-89.
12. Современные представления о морфогенезе герпетической инфекции. Недзьведь М.К., Фридман М.В., Недзьведь А.М. и др. // Инфекция и иммунитет: Мат. республиканской науч.-практ. конф., посвященной 75-летию БелНИИЭМ. – Минск, 1999. – С.309-313.
РЕЗЮМЕ
диссертационной работы Недзьведя Александра Михайловича “Сегментация слабоконтрастных изображений гистологических объектов”
Ключевые слова: сегментация, медицинские изображения, системы анализа изображений, математическая морфология, цвет, гистологические объекты.
Диссертационная работа посвящена проблеме сегментации объектов на изображениях гистологических препаратов. Её целью является разработка алгоритмов, позволяющих выделить гистологические объекты на изображении препарата, сохранив геометрические и оптические свойства объекта. Предложена классификация объектов для определения алгоритма сегментации. Разработан алгоритм полутонового утоньшения, учитывающий особенности изображений гистологических препаратов. На основе методов математической морфологии разработаны алгоритмы сегментации сосудов и волокон при мелком и большом оптических увеличениях, а также алгоритм идентификации сосудов и волокон при большом увеличении, использующий результаты алгоритма сегментации. Разработаны алгоритмы сегментации площадных объектов (клеток, ядер клеток, поперечного сечения сосудов и волокон) методами математической морфологии и объединения областей, а также алгоритм определения клеток на бинарном изображении, полученном в результате пороговой сегментации. Для выполнения сегментации гистологических объектов на цветных изображениях разработана система координат описания цвета PHS. Представлена система анализа изображений Bioscan, в которой реализованы вышеописанные алгоритмы. Полученные в диссертационной работе результаты пред?