Реферат: Щелочные способы получения глинозема
В отходящих газах количество СО и О2 не должно превышать 0.4 – 0.6 %, а СО2 должно быть в пределах 25 – 27 %.
2.1 Основные химические реакции процесса спекания.
Спекание – важнейшая операция в технологической схеме сухого щелочного способа. При проведении этой операции необходимо создать такие условия, которые способствовали бы образованию растворимых соединений алюминия, сводили бы к минимуму возможность перехода в раствор кремнезёма, а также исключили бы протекание реакций, вызывающих потери Al2 O3 и щёлочи с красным шламом.
В процессе спекания участвуют Al2 O3 , Na2 O, Fe2 O3 , SiO2 , CaO, а также TiO2 , и примеси некоторых силикатов. При нагреве до 550 0 С происходит обезвоживание гидроокиси алюминия, входящей в состав боксита. При температурах выше 700 0 С две параллельные реакции: взаимодействие окиси железа с содой и окиси алюминия с содой. Причём сначала преобладает первая реакция, при повышение же температуры до 900 0 С начинается образование алюмината натрия в результате прямого вытеснения окисью алюминия окиси железа из феррита натрия. Образование алюмината завершается при температуре 1150 0 С.
При температуре 8000 С энергично протекает реакция между кремнезёмом и содой с образованием силиката натрия, который с повышением температуры до 1200 0 С взаимодействует с алюминатом натрия, давая алюмосиликат натрия. Однако в присутствии извести большая часть его разлагается.
В температурном интервале 1000 – 11000 С при малых количествах соды в шихте оксид алюминия взаимодействует с оксидом кальция, образуя метаалюминат кальция, оксид кальция взаимодействует с оксидом железа (3), что приводит к образованию некоторых количеств феррита кальция.
При температуре 11000 С начинается реакция между оксидом кальция и кремнезёмом, в результате которой при дальнейшем нагревании образуется двукальциевый силикат.
Спёк при температуре 12000 С, состоит из метаалюмината натрия Na2 O*Al2 O3 , метаферррита натрия Na2 O*Fe2 O3 и двукальциевого силиката 2CaO*SiO2 . Количество соды в шихте должно обеспечивать превращения всех окислов в соответствующие метасоединения. На практике соду вводят в шихту с избытком (около 5 %).
Соотношение компонентов будет следующим:
1 молекула Na2 CO3 на 1 молекулу Al2 O3 ;
1молекула Na2 CO3 на 1 молекулу Fe2 O3 ;
2 молекулы Na2 CO3 на 1 молекулу SiO2 ;
Шихта, в которой количество соды берётся из расчёта полного связывания глинозёма с окисью железа в алюминат и феррит натрия, называется сиехиометрически насыщенной содо-известковой шихтой. Если количество соды в шихте не обеспечивает полного превращения в алюминат и феррит натрия глинозёма и окиси железа, то это ненасыщенная шихта. Преимущество насыщенной шихты перед не насыщенной – в наиболее полном превращении глинозёма в алюминат натрия, в большем диапазоне спеккообразования (150 – 200 0 С) и в получении пористого спёка. Однако при выщелачивании спека, полученного из ненасыщенной шихты, потери щёлочи будут ниже.
Соотношение в спеке основных составляющих определяется составом применяемого боксита и колеблется в следующих пределах:
50 – 60 % Na2 O*Al2 O3 ;
15 – 20 % Na2 O*Fe2 O3 ;
25 –30 % 2CaO*SiO2 ;
3. Устройство и работа вращающихся печей.
Основной элемент вращающейся печи – металлический барабан. Он сваривается из листового железа толщиной 20 – 30 мм. Как правило, диаметр печи по всей длине одинаков, но в некоторых для изменения скорости движения материала в отдельных зонах при неизменном уклоне диаметр барабана изменяется. Внутри барабан футеруется высокоглинозёмистым или шамотным кирпичом ( толщина футеровки 200 – 300 мм ). Между металлическим кожухом печи и огнеупорной кладкой обычно закладывается тонкий теплоизоляционный слой (10 – 30 мм). Общий вид печи представлен на рисунке (3).
На наружной поверхности барабана закрепляются опорные, стальные бандажи в виде неразрывных колец шириной 400 – 800 мм. Каждый бандаж опирается на ролики, ширина которых на 50 – 110 мм больше ширины бандажа. Опорные ролики установлены на массивных стальных плитах, на железобетонных фундаментах таким образом, что барабан печи имеет небольшой уклон 2 – 3.5 % от его длины. Это обеспечивает перемещение материала внутри печи при вращении барабана. Барабан печи при вращении испытывает напряжение на изгиб между опорами барабана. Их допустимая величина определяет выбор толщины корпуса барабана, диаметр печи, расстояние между опорами, которое может достигать 30 м.
Барабан вращается вокруг своей оси со скоростью 0.6 –2.0 об./мин. При вращении печи барабан «катается» по опорным роликам. Чтобы удержать наклонно расположенную печь от соскальзывания с опорных роликов, их оси устанавливают под небольшим уклоном по отношению к продольной оси печи (от 00 10` до 00 45`). Величина угла разворота опорных роликов зависит от веса печи, угла наклона барабана и его диаметра. Расположение печи в продольном направлении фиксируется автоматически при помощи специальных упорных роликов с гидроприводами, которые сообщают печи возвратно-поступательное движение с двойным ходом на 50 –100 мм за сутки. Эти ролики фиксируют положение печи вдоль её оси и, следовательно, зацепление венцовой шестерни. Для остановки вращения печи служит электромагнитный фрикционный тормоз.
Топливосжигающие устройства устанавливаются в головной части барабана. Головка печи состоит из топочной камеры, устройства для выгрузки материала и уплотнительного устройства, перекрывающего щель между вращающимся барабаном и неподвижной топочной камерой. К головке примыкает устье канала, через который полупродукт при помощи течки пересыпается в холодильник.
Уплотнительные устройства имеют существенное значение для эффективной работы как самой печи, так и холодильника. Это устройство может быть выполнено в виде, входящих, в друг друга лабиринтных колец приваренных к корпусу и к головки печи. Холодный воздух, попадающий в кольцевой канал лабиринтного уплотнения, отсасывается из него вентилятором, что предотвращает попадание воздуха в печь.
Другая конструкция уплотнительного устройства состоит из двух трущихся друг о друга шлифовальных колец, одно из которых устанавливается на печи, а другое прикреплено к головке печи.
Противоположная часть печи состоит из газоотводящей камеры, загрузочного устройства и уплотнения. Материал загружается в печь либо в виде сухой, но чаще всего гранулированной шихты, либо в виде пульпы с содержанием влаги 40 –42 %.
Бокситовая шихта загружается распылением с помощью пульповых форсунок. Из форсунки пульпа выбрасывается через сопло в виде мелких капель. Длина распыления составляет обычно 10 – 12 м. На каждую печь устанавливают три-пять пульповых форсунок. Форсунки закрепляют на специальном металлическом щите, заделанном в кладку газоотводящей камеры, и вдвигают в печь примерно на 0.5 м. Угол их поворота относительно оси печи можно регулировать. Большую часть форсунок помещают в нижней части сечения печи под углом к её оси, для того чтобы увеличить дальность и продолжительность полёта материала, а, следовательно, количество получаемого им тепла. Эффективность теплообмена повышается с увеличением тонкости распыления пульпы, однако, при этом значительно возрастает унос материала из печи, что является одним из недостатков данного способа загрузки. Необходимо постоянно контролировать работу форсунок и периодически их прочищать. Сопла форсунок изготовляются из твёрдых сплавов и по мере износа заменяются.
Для предотвращения пылеобразования при подачи влажной шихты на внутренние стенки барабана монтируется отбойное устройство в виде связки рельсов длинной 10 –12 м, закреплённых цепью при помощи специальных шарниров в холодной части печи. Для того, чтобы улучшить теплоиспользование, в зонах сушки и подогрева устанавливают внутренние теплообменные устройства.
Наиболее эффективными перегребающими теплообменными устройствами являются цепные завесы, которые обычно выполняются из цепей с круглыми звеньями. Применяют два способа занавески цепей: гирляндами (рис. 4а) и свободными концами (рис. 4б).
Рис. 4. Схема подвески цепей гирляндами (а) и свободными концами (б).
Цепная завеса влияет не только на теплообмен, но и на улавливание пыли, стойкость футеровки и образование настылей.
Ячейковые теплообменники (рис.5) выполняются из жаростойких сплавов. Они монтируются из литых полок длиной 250 – 400 мм с направляющими рёбрами, которые способствуют перемешиванию материала. Эти теплообменники при сохранении неизменной производительности печи снижают температуру отходящих газов и удельный расход тепла. Их установка сокращает свободное поперечное сечение печи, что приводит к возрастанию скорости газов и в результате к увеличению уноса материала.
Рис. 5. Схема ячейкового теплообменника.