Реферат: Шпаргалка по геометрии и алгебре
Т. Сумма смежных углов = 180°
Т. Вертикальные углы равны (общая вершина,стороны одного сост.продолжение сторон друг.)
Две прямые наз-ся параллельн. , если они лежат в 1-й плоскости и не пересекаются.
Акс. (осн.св-во паралл.прямых) Через точку, не леж. на данной прямой можно провести на плоскости только 1 прямую, параллельную данной.
Сл. : 1. Если прямая пересекает 1 из паралл. Прямых, то перес-ет и другую.
2. Если две прямые | | 3-ей, то | | друг другу.
Признаки параллельности прямых. Е
А В В А А В
С Д Д
Д С С
ÐВАС ÐДСА внутр. одностор. (1рис)
ÐВАС ÐДСА внутр. накрест лежащ. (2)
ÐЕАВ ÐАСД соответств. (3)
Т 1. Если при пересеч. 2-х прямых на плоскости внутр.накрест лежащ. Ð =, то прямые параллельны.
Т 2. Если при пересеч 2-х прямх секущей соответственные углы равны,-прямые| |.
Док-во Пусть (а) и (b) обр-т к секущей АВ равные соотв. Ð1=Ð2
Но Ð1=Ð3 (вертикальные)-Ð3=Ð2.Но Ð2 и Ð3-накрестлежщие.-По Т 1 a | | b-
Т3. Если при пересеч. 2-х прямых секущей на плоскости, сумма внутр. одност. Ð=180°, то прямые | |-
Для ТТ 1-3 есть обратыные.
Т4. Если 2 паралл.прямые пересечны 3-й
прямой, то внутр.накрестлеащие Ð=, со-
ответств.Ð=, сумма внутр.одностÐ=180°.
Перпедикулярные пр-е пересек-ся Ð90°.
1.Через кажд.тчку прямой можно провести ^ ей прямую, и только 1.
2. Из любой тчки (Ï данной прямой) можно опустить перпендикуляр^ на данную прямцю и только 1.
3. две прямые ^ 3-й параллельны.
4. Если прямая ^ 1-й из | | прямых, то она ^ и другой.
Многоугольник ( n -угольник)
Т. Любой правильный выпуклый мн-к можно вписать в окружность и описать около окружности. (R- опис., r- впис.)
--> ЧИТАТЬ ПОЛНОСТЬЮ <--