Реферат: Шпаргалки по статистике

Групповые статистические таблицы дают более информативный материал для анализа изучаемых явлений, благодаря образованным в их подлежащем группам по существенному признаку или выявлению связи между рядом показателей.

Комбинационными таблицами называются такие, в которых подлежащее содержит группировку единиц совокупности по двум или более признакам, взятым в сочетании. Комбинационная таблица устанавливает взаимное действие на результативные признаки существующую связь между факторами группировки.

ПРАВИЛА ЗАПОЛНЕНИЯ

Если одно из числовых выражений данного признака равно нулю, то пересечение соответствующей графы и строки перечеркивается.

Если числовые значения признака неизвестны, то в пересечении графы и строки ставится многоточие.

Если пересечение графы и строки не имеет смысла, то ставится "Х".

Если в таблице проценты по отношению к какому-либо предыдущему году, то этот год должен быть показан в таблице, несмотря на указание его в заголовке.

СРЕДНИЕ ВЕЛИЧИНЫ

Существуют различные средние:

· средняя арифметическая;

· средняя геометрическая;

· средняя гармоническая;

· средняя квадратическая;

· средняя хронологическая.

Средняя арифметическая простая (невзвешенная) равна сумме отдельных значений признака, деленной на число этих значений.

Простая средняя арифметическая применяется в случаях, когда имеются отдельные значения признака, т.е. данные не сгруппированы. Если данные представлены в виде рядов распределения или группировок, то средняя исчисляется иначе, как средняя арифметич. взвешенная.

Средняя гармоническая простая и взвешенная

Мода - это величина признака (варианта), наиболее часто повторяющаяся в изучаемой совокупности. Для дискретных рядов распределения модой будет значение варианта с наибольшей частотой.

где - начальное значение интервала, содержащего моду;

- величина модального интервала;

- частота модального интервала;

- частота интервала, предшествующего модальному;

- частота интервала, следующего за модальным.

Медиана - это варианта, расположенная в середине вариационного ряда. Если ряд распределения дискретный и имеет нечетное число членов, то медианой будет варианта, находящаяся в середине упорядоченного ряда.

где — начальное значение интервала, содержащего медиану;

— величина медианного интервала;

— сумма частот ряда;

— сумма накопленных частот, предшествующих медианному интервалу;

— частота медианного интервала.

СТАТИСТИЧЕСКИЕ ГРАФИКИ

К-во Просмотров: 1085
Бесплатно скачать Реферат: Шпаргалки по статистике