Реферат: Симетрія молекул

Результати перетворення координат вектора прийнято представляти за допомогою таблиць характерів. Якщо напрямок вектора при проведенні операцій симетрії не змінюється, то характер позначається +1, якщо змінюється, то –1.

1) Операція Е не змінить напрям вектора, тому характер цієї операції симетрії позначився +1.

2) 2z– поворот вектора на 180° вздовж осі zзмінить координату вектора на протилежну. Характер цієї операції позначається –1.

3) Операція my (площина перпендикулярна до осі у); відбиття у цій площині не змінив напрямок вектора ; характер операції +1.

4) Операція mx (площина симетрії перпендикулярна осі х); відбиття у цій площині змінить напрямок вектора на протилежний. Характер операції симетрії –1.

Результати перетворення координат вектора прийнято представляти за допомогою таблиці характерів.

Розглянемо характери операцій симетрії вектора хуzв точковій групі С2 v .

1) Е не змінить напрямок вектора хуz. Характер операції симетрії в цьому випадку представляється як сума коефіцієнтів хуz = 1 + 1 + 1 = 3.

2) 2zкоординату х і у змінить на протилежні, а zзалишиться без зміни: –1–1+1 = –1.

3) Операції mx : х = х, у = – у, z = z; +1–1+1 = +1.

4) Операція mу : х = – у, у = у, z = z; –1+1+1 = +1.

Е 2z mx my
1 –1 1 –1
1 –1 1 +1
1 +1 +1 +1
3 –1 +1 +1

Повне або приведене представлення цих операцій теж можемо представити у таблиці:

Е 2zmx my

3 –1 +1 +1.

Приведене представлення можна розкласти на суму неприведених представлень.

Симетрія молекул і нормальні коливання . Будь-яка молекула відноситься до певної точкової групи, тобто володіє певним набором елементів симетрії. Повна сукупність операціїй симетрії приводиться в таблицях типів симетрії і характерів представлень.

При коливаннях молекул можливі тільки певні комбінації властивостей симетрії зміщеної від рівноважної конфігурації.

Нормальні коливання називаються симетичними (s) по відношенню до даної операції симетрії, якщо при її виконанні вектори зміщень атомів не змінюють знак і абсолютне значення (домножуються на +1).

Антисиметричне коливання (аs) відносно операції симетрії є таким, коли при її виконанні знак зміщень змінюється на протилежний (домножується на –1).

Нормальне коливання , яке є симетричним відносно всіх операцій симетрії даної точкової групи називається повносиметричним .

Всі інші типи нормальних коливань неповносиметричні : два (Е) або три (F) вироджені .

При невироджених коливаннях операції симетрії переводять одну форму коливань в іншу, тобто вектори зміщень домножуються на числа не всі рівні 1 або всі нерівні 1.

Повна характеристика типу симетрії нормального коливання описується його відношенням до всіх операцій симетрії даної точкової групи.

Невироджені типи симетрії позначаються символами А і В. При цьому буквою А позначають коливання симетрії відносно виділеної головної осі , орієнтованої вершиноюВ-коливання антисиметричні відносно такої осі .

Підстрочні індекси gі uпри А і В позначають симетричні і антисиметричні коливання по відношенню до операції інверсії в центрі (с). Підстрочні цифрові індекси 1 і 2 симетричний і антисиметричний тип коливань по відношенню до операції відбиття у вертикальній площині σv .

Надстрочні індекси – один штрих (¢) або два штриха (²) при буквах – позначають симетричний і антисиметричний типи коливань відносно відбиття в горизонтальній площині σh перпендикулярної головної осі симетрії.

3N-6 = 3 · 3 – 6 = коливання.

2 σ1 σ2 ; Е) – С2 v .

К-во Просмотров: 319
Бесплатно скачать Реферат: Симетрія молекул