Реферат: Синтез комбинацонных схем и конечных автоматов, сети Петри
Рисунок 1.2.1 – карта Карно
На основании выбранной комбинации покрытий выписываем минимизированное выражение для функции F1:
. (1.3.3)
Для второй функции применяем метод Квайна-МакКласки.
На первом шаге алгоритма выписываем комплекс K0-кубов заданной функции, упорядоченных по возрастанию количества единиц:
0 0 0 0 0 1 1 1 1
0 0 1 1 1 0 0 1 1
K0 = 0 1 0 0 1 0 1 0 1 (1.3.4)
0 0 0 1 0 1 0 0 0 .
Второй этап основан на операции склеивания. Каждый из кубов проверяется на “склеиваемость” со всеми остальными. Склеивающиеся кубы должны различаться не более чем в одном разряде. Склеенный разряд в дальнейшем обозначается как x. Куб, участвовавший в операции склеивания, соответствующим образом помечается. Поскольку таких кубов мало, будем отмечать не участвовавшие в операции склеивания кубы. В результате получаем комплекс K1-кубов, также упорядоченный по возрастанию количества единиц в разрядах:
0 0 0 x 0 0 x x 1 1
0 x x 0 1 1 1 1 x 1
K1 = x 0 1 1 0 x 0 1 1 x (1.3.5)
0 0 0 0 x 0 0 0 0 0 .
Повторяем вышеописанную операцию для комплекса K1-кубов, после чего удаляем из полученного комплекса K2-кубов повторяющиеся:
0 0 x x x x 0 x x
x x x x 1 1 x x 1
K2 = x x 1 1 x x = x 1 x (1.3.6)
0 0 0 0 0 0 0 0 0
Те кубы, которые не участвовали в операциях склеивания, называются импликантами – это кандидаты на то, чтобы попасть в итоговую ДНФ. Для них составляем таблицу покрытий K0-кубов. Импликанта считается покрывающей K0-куб, если они совпадают при x, принимающем произвольное значение.
K0 z |
0 0 0 0 |
К-во Просмотров: 504
Бесплатно скачать Реферат: Синтез комбинацонных схем и конечных автоматов, сети Петри
|