Реферат: Синтез комбинацонных схем и конечных автоматов, сети Петри
д) разработать логическую схему автомата в базисе И – НЕ, реализуя элементы памяти на триггерах и задержках.
2.2 Теоретические сведения
Конечным автоматом называется такое дискретное устройство, выходные сигналы которого в определённые моменты времени зависят не только от последнего пришедшего входного сигнала, но и от некоторого количества предыдущих его значений.
Различают синхронные и асинхронные автоматы. У асинхронных смена выходных сигналов y(tj) может происходить только в моменты изменения входных x(tj) , у синхронных – в моменты времени, определяемые дополнительным синхронизирующим сигналом c(t) .
Определим множества, которым могут принадлежать входные и выходные сигналы (условимся обозначать tj как j):
– множетва входных и выходных сигналов.
Тогда выражения
(2.2.1)
определяют входной и выходной алфавиты автомата.
Пусть . Тогда если y(j) = λ(x(j)), то этот автомат является, очевидно, комбинационной схемой.
Введём дополнительную переменную для того, чтобы охарактеризовать состояние автомата в каждый момент времени j:
(2.2.2)
В том случае, если X, Y и S – конечные множества, то и сам автомат называют конечным.
В виде уравнений любой конечный автомат можно записать разными способами. Одна из возможных форм записи:
(2.2.3)
Записанный таким образом автомат называется автоматом Мили. Ясно, что это – более информативная форма записи по сравнению с автоматом Мура:
(2.2.4)
Способы задания автоматов.
Во - первых, автомат может быть задан непосредственно уравнениями вида (2.2.3) или (2.2.4).
Во - вторых, уравнения (2.2.3) и (2.2.4) могут быть представлены в табличной форме. Табличный аналог первого уравнения в (2.2.3) называется таблицей переходов, второго – таблицей выходов.
В - третьих, таблицы переходов и выходов можно объединить в одну. Содержимое каждой клетки представляет собой дробь: над косой чертой вписывается соответствующее значение из таблицы переходов, под косой чертой – значение из таблицы выходов. Полученная таким образом таблица называется общей таблицей переходов и выходов конечного автомата.
Граф автомата – это сигнальный граф, вершины которого обозначают состояния автомата, на дугах отражены условия перехода из состояния в состояние и значения выходных сигналов в виде дроби: над косой чертой – x(j), под ней – y(j).
Конечный автомат можно также описать с помощью матрицы переходов. Это аналог графа в табличной форме. Она представляет собой квадратную матрицу размерности число состояний число состояний, в которой отражены условия перехода из состояния в состояние аналогично изображённым на графе.
Общее определение конечного автомата:
M = (X, Y, S, δ, λ), (2.2.5)
где X – входной алфавит, Y – выходной алфавит, S – множество состояний, δ – функция переходов, λ – функция выходов.
Пусть имеется два автомата: M и M’.
Если для любого существует по крайней мере одно , эквивалентное ему, то говорят, что M’ покрывает M: M’ ≥ M.
Если одновременно M’ ≥ M и M ≥ M’, то M ~ M’ . Получаем эквивалентные автоматы. В этом случае невозможно различить M и M’ по их реакции на входные сигналы.