Реферат: Синтез комбинацонных схем и конечных автоматов, сети Петри
Пример простейшей сети Петри:
p1
▪▪▪
t1 p3
p2 ▪
Рисунок 3.2.1 – Пример сети Петри
Правила работы с сетями Петри.
Сеть Петри выполняется посредством запуска переходов. Переход может быть запущен в том случае, когда он разрешён. Переход является разрешённым, если каждая из его входных позиций содержит число фишек не меньшее, чем число дуг из неё в данный переход.
Процедура запуска состоит в удалении из каждой входной позиции перехода числа фишек, равного числу дуг из неё, и в выставлении в каждой выходной позиции числа фишек, равного числу дуг, входящему в неё.
Проиллюстрируем сказанное на примере уже нарисованной сети Петри. Запустим в ней переход t1 – он является разрешённым:
p1
▪
t1 p3
▪
p2 ▪
Рисунок 3.2.2 – Пример запуска перехода сети Петри
Пространство состояний и поведенческие свойства сетей Петри.
Пусть имеется маркированная сеть Петри:
M = (P, T, I, O, μ) (3.2.12)
У неё n позиций. В каждой позиции не более N фишек. Тогда пространство сотояний есть множество всех возможных маркировок сети. Определим δ – функцию следующего состояния.
Если переход tj разрешён при текущей маркировке μ , то следующая маркировка μ’ определится так:
μ’ = δ (μ, tj) (3.2.13)
Если переход tj не разрешён, то δ не определена.
Пусть {tj0, tj1,…, tjs} – последовательность запущенных переходов. Тогда ей будет соответствовать последовательность {μ0, μ1,…,μs+1}, то есть
μk+1 = δ(μk, tjk) (3.2.14)
На основании последнего равенства можно определить понятие непосредственно достижимой маркировки. Для сети C = (P, T, I ,O) маркировка μ’ называется непосредственно достижимой из μ , если существует такой переход tj T, при котором
μ' = δ(μ , tj) (3.2.15)
Можно распространить это понятие на множество достижимых из данной маркировок. Определим множество достижимых из μ маркировок R(C, μ) следующим образом:
во - первых, μ R(C, μ);