Реферат: Синтез комбинацонных схем и конечных автоматов, сети Петри

На основе введённых понятий можно сформулировать ряд свойств сети Петри, характеризующих её в процессе смены маркировок – назовём их поведенческими свойствами сети Петри. Определим наиболее важные из них.

Достижимость данной маркировки. Пусть имеется некоторая маркировка μ, отличная от начальной. Тогда возникает вопрос достижимости: можно ли путём запуска определённой поледовательности переходов перейти из начальной в заданную маркировку.

Ограниченность. Сеть Петри называется k- ограниченной, если при любой маркировке количество фишек в любой из позиций не превышает k. В частности, сеть называется безопасной, если k равно 1. Кроме того, сеть называется однородной, если в ней отсутствуют петли и одинарной (простой), если в ней нет кратных дуг.

Активность. Сеть Петри называется активной, если независимо от дотигнутой из μ0 маркировки существует последовательность запусков, приводящая к запуску этого перехода.

Реально вводят понятия нескольких уровней активности для конкретных переходов. Переход tj T называется:

а) пассивным (L0- активным), если он никогда не может быть запущен;

б) L1- активным, если он может быть запущен последовательностью переходов из μ0 хотя бы один раз;

в) L2- активным, если для любого числа K существует последовательность запусков переходов из μ0 , при которой данный переход может сработать K и более раз;

г) L3- активным, если он является L2- активным при K → ∞.

Обратимость. Сеть Петри обратима, если для любой маркировки μ R(C, μ0) маркировка μ0 достижима из μ.

Покрываемость. Маркировка μ покрываема, если существует другая маркировка μ’ R(C, μ0) такая, что в каждой позиции μ’ фишек не меньше, чем в позициях маркировки μ.

Устойчивость. Сеть Петри называется устойчивой, если для любых двух разрешённых переходов срабатывание одного из них не приводит к запрещению срабатывания другого.

Существуют два основных метода анализа сетей Петри: матричные и основанные на построении дерева покрываемости.

Первая группа методов основана на матричном представлении маркировок и последовательностей запуска переходов. Для этого определим две матрицы размерности количество позиций количество переходов, связанные со структурой сети. Первая матрица называется матрицей входов:

D – [i, j] = # (pi , I(tj)), (3.2.16)

каждый её элемент равен числу фишек, уходящих из j- й позиции при запуске i- го перехода. Вторая матрица называется матрицей выходов:

D + [i, j] = # (pi , O(tj)), (3.2.17)

каждый её элемент равен числу фишек, приходящих в j- ю позицию при запуске i- го перехода. Определим единичный вектор e[j] размерности m, содержащий нули во всех позициях кроме той, которая соответствует запускаемому в данный момент переходу. Очевидно, что переход разрешён, если μ ≥ e[j]· D –. Тогда результат запуска j- го перехода можно описать так:

μ’ = μ + e[j]· D , (3.2.18)

где D = ( D + D –) – матрица изменений. Тогда все сформулированные ранее проблемы сети Петри легко интерпретируются матричными уравнениями вида

μ = μ0 + σ· D , (3.2.19)

где μ – исследуемая маркировка, σ – вектор, компоненты которого показывают, сколько раз срабатывает каждый переход.

Хотя данный метод достаточно прост, он не лишён некоторых недостатков. А именно, его применение даёт лишь необходимые условия существования какого- либо свойства, иными словами, может гарантировать лишь его отсутствие, а о присутствии мы сможем говорить с уверенностью, только проанализировав дерево покрываемости (смены) маркировок.

Дерево маркировок сети – это связанный граф, в вершинах которого находятся маркировки, которых мы достигли в результате последовательного запуска разрешённых переходов, а на дугах, соединяющих вершины – зпускаемые переходы. Путь от корня к каждой маркировке отражает последовательность запусков, приведшую к ней. Корнем дерева является начальная маркировка. При неограниченном накапливании фишек в позиции на дереве образуется петля, а в маркировке на месте, соответствующем зациклившейся позиции, ставится ω – символ бесконечно большого числа.

Ясно, что этот метод хотя и требует утомительного перебора всех возможных маркировок сети, но зато по уже готовому дереву достаточно легко анализировать проблемы достижимости, покрываемости, активности, обратимости сети.

Описав поведенческие свойства и методы анализа, можно перейти непосредственно к анализу конкретной сети Петри.

3.3 Расчёты и полученные результаты

Исходная сеть в виде графа:

К-во Просмотров: 510
Бесплатно скачать Реферат: Синтез комбинацонных схем и конечных автоматов, сети Петри