Реферат: Системы базисных функций
Если число точек N небольшое или большое число точек с нулевыми значениями, то целесообразно использовать ДПФ, в противном случае целесообразно использовать так называемое быстрое преобразование Фурье (БПФ). Сущность БПФ заключается в прореживании исходной выборки сигнала по времени – n или по частоте – k .
При этом, для вычисления спектральных коэффициентов требуются одни и те же промежуточные спектры, что существенно сокращает объем вычислений. В некоторых случаях оказывается удобная БПФ с прореживанием по времени, в других случаях по частоте.
Пример 4 . Определить дискретную спектральную плотность, если спектральная плотность непрерывного сигнала равна
.
Решение: Алгоритм решения задачи можно представить в виде
.
1. Для заданной спектральной плотности определим корреляционную функцию
2. Определим дискретную корреляционную функцию
Определим дискретную спектральную плотность
4. Определим дискретную спектральную плотность в форме Z ‑преобразования, выполнив подстановку z = epT .
Проверка: Определим дискретную корреляционную функцию
Для выражения спектральной плотности определим значения полюсов – z k , их количество и кратность – m
Используя теорему Коши о вычетах, корреляционную функцию можно определить как сумму вычетов по полюсам подынтегральной функции
Так как корреляционная функция является четной, то ее можно представить в виде
Выводы
При реализации алгоритмов БПФ возможно распараллеливание вычислений (специализированные процессоры), что позволяет ускорить выполнение преобразований.
Области применения дискретного преобразования Фурье:
дискретный спектральный анализ;
моделирование цифровых фильтров;
распознавание образов;