Реферат: Случайное событие и его вероятность

Если вероятность события А в данном опыте весьма мала, то (при однократном выполнении опыта) можно вести себя так, как будто событие А вообще невозможно, т. е. не рассчитывать на его появление.

В повседневной жизни мы постоянно (хотя и бессознательно) пользуемся этим при принципом. Например выезжая куда-то на такси, мы не рассчитываем на возможность погибнуть в дорожной катастрофе, хотя некоторая (весьма малая) вероятность этого события все же имеется. Отправляясь летом на Кавказ или в Крым, мы не захватываем с собой зимней верхней одежды, хотя какая-то (очень малая) вероятность того, что нас настигнет мороз, всё-таки не равна нулю.

Переходим к самому тонкому и трудному вопросу: насколько мала должна быть вероятность события, чтобы его можно было считать практически невозможным ?

Ответ на вопрос выходит за рамки математической теории и в каждом отдельном случае решается из практических соображений, в соответствии с той важностью, которую имеет желаемый для нас результат опыта. Чем опаснее для нас возможная ошибка предсказания, тем ближе к нулю должна быть вероятность события, чтобы его считать практически невозможным.

Существует класс опытов, для которых вероятности их возможных исходов можно вычислить, исходя непосредственно из самих условий опыта. Для этого нужно, чтобы различные исходы опыта обладали симметрией и в силу этого были объективно одинаково возможными.

Рассмотрим, например, опыт, состоящий в бросании игральной кости. Если кубик выполнен симметрично, "правильно" (центр тяжести не смещен ни к одной из граней), естественно предположить, что любая из граней будет выпадать так же часто, как каждая из остальных. Так как достоверное событие "выпадает какая-то из граней" имеет вероятность, равную единице, и распадается на шесть одинаково равных вариантов (1, 2, 3, 4, 5 или 6 очков), то естественно приписать каждому из них вероятность, равную 1/6.

Для всякого опыта, обладающего симметрией возможных исходов, можно применить аналогичный прием, который называется непосредственным подсчетом вероятностей.

Перед тем как дать способ непосредственного подсчёта вероятностей, введём некоторые вспомогательные понятия.

Говорят, что несколько событий в данном опыте образуют полную группу, если в результате опыта неизбежно должно появиться хотя бы одно из них.

Примеры событий, образующих полную группу:

1) Появление "1", "2", "3", "4", "5", "6" очков при бросании игральной кости;

2) Два попадания, два промаха и одно попадание, один промах при двух выстрелах по мишени.

Несколько событий в данном опыте называются несовместимыми если никакие два из них не могут появиться вместе. Примеры несовместимых событий:

1) Выпадение герба и выпадение решки при бросании монеты;

2) Два попадания и два промаха при двух выстрелах;

3) Выпадение двух, выпадение трех и выпадение пяти очков при однократном бросании игральной кости. Несколько событий называются равновозможными, если по условиям симметрии есть основание считать, что ни одно из них не является более объективно возможным чем другое.

Заметим, что равновозможные события не могут проявляться иначе, чем в опытах, обладающих симметрией возможных исходов; наше незнание о том, какое из них вероятнее, не есть основание для того, чтобы считать события равновозможными.

Примеры равновозможных событий:

1) Выпадение герба и выпадение решки при бросании симметричной, "правильной монеты";

2) Появление карты "червонной", "бубновой", "трефовой" или "пиковой" масти при вынимании карты из колоды.

С опытами, обладающими симметрией исходов, связываются особые группы событий: они образуют полную группу, несовместимы и равновозможны.

События, образующие такую группу, называются случаями. Примеры случаев:

1) Появление герба и решки при бросании монеты;

2) Появление "1", "2", "3", "4", "5" и "6" очков при бросании игральной кости.

Если опыт обладает симметрией возможных исходов, то случаи представляют собой набор его равновозможных и исключающих друг друга исходов. Про такой случай говорят, что он сводится к схеме случаев. Для таких опытов возможен непосредственный подсчет вероятностей, основанный на подсчете доли так называемых благоприятных случаев в общем их числе.

Случай называется благоприятным ( или "благоприятствующим") событию A, если появление этого случая влечет за собой появление данного события.

Если опыт сводится к схеме случаев, то вероятность события A в данном опыте можно вычислить как долю благоприятных случаев в общем их числе:

P(A)=m/n,

где m - число случаев, благоприятных событию A; n - общее

число случаев.

К-во Просмотров: 870
Бесплатно скачать Реферат: Случайное событие и его вероятность