Реферат: Случайные процессы
Детерминированное, т. е. заранее известное сообщение не содержит информации. Поэтому в теории связи источник сообщения следует рассматривать как устройство, осуществляющее выбор из некоторого множества возможных сообщений. Каждая конкретная реализация сообщения возникает с определённой вероятностью, которая в общем случае зависит от того, какие сообщения передавались раньше. Точно так же и посылаемая в канал реализация сигнала является элементом некоторого множества, выбираемого с определённой вероятностью. Множество, на котором задана вероятностная мера, называют ансамблем. Ансамбли сообщений и сигналов могут быть конечными (в дискретном случае) или бесконечными.
Ансамбль функций времени является случайным процессом.
Случайными процессами называются такие процессы, которые математически описываются случайными функциями времени. Случайной называется функция, значения которой при каждом значении аргумента являются случайными величинами.
Случайная функция времени , описывающая случайный процесс, в результате опыта принимает ту или иную конкретную форму , неизвестную заранее. Эти возможные формы случайной функции называются реализациями случайного процесса.
Мгновенные значения случайного процесса в фиксированный момент времени ti являются случайными величинами и называются сечением случайного процесса.
Статистические свойства случайного процесса как множества (ансамбля) реализации , характеризуются законами распределения, аналитическими выражениями которых являются функции распределения.
Для некоторого фиксированного момента времени ti одномерная функция распределения
определяет вероятность того, что мгновенное значение случайного процесса в этот момент времени примет значение, меньшее или равное X, то есть вероятность того, что .
В общем случае скалярный процесс X(t) полностью задан, если для любого набора моментов времени и любых значений можно вычислить вероятность того, что X(t) принимает в указанные моменты времени значения, не превышающие соответственно .
.
Функция называется n-мерной функцией распределения вероятности процесса.
Если существует частная производная функции распределения по xi , то можно определить плотность распределения вероятности. Одномерная плотность распределения вероятностей случайного процесса определяется соотношением
.
Аналогично определяются многомерные (n-мерные) функции распределения для совокупности моментов времени t1 , t2 ,..,ti ,..,tn , которые более полно характеризуют случайный процесс одновременно в n сечениях, обозначаемые как
.
В теории связи наиболее широкое применение находят двумерные функции распределения
и
.
Во многих практических случаях для характеристики случайных процессов достаточно знать лишь его усредненные, так называемые, числовые характеристики (моментные функции). Наиболее часто используются математическое ожидание (первый начальный момент), дисперсия (второй центральный момент), ковариационная функция и корреляционная функция.
Простейшей характеристикой случайного процесса является его математическое ожидание
,
которое представляет собой неслучайную функцию времени, около которой различным образом располагаются отдельные реализации случайного процесса.
Математическое ожидание случайного процесса - сигналов электросвязи представляет собой постоянную составляющую.
Дисперсией случайного процесса называется неслучайная функция времени, значения которой для каждого момента времени равны математическому ожиданию квадрата отклонения случайного процесса от его математического ожидания
.
Дисперсия определяет степень разброса значений случайного процесса около математического ожидания.
Применительно к сигналам электросвязи дисперсия является мощностью переменной составляющей на нагрузке 1 Ом и измеряется в Ваттах.
--> ЧИТАТЬ ПОЛНОСТЬЮ <--