Реферат: Создание и развитие искусственного интеллекта

Начало современного этапа развития систем искусственного интеллекта (ИИ) может быть отнесено к середине 50-х гг. Этому способствовала программа, разработанная А. Ньюэллом, предназначенная для доказательства теорем в исчислении высказываний и названная «ЛОГИК-ТЕОРЕТИК». Некоторые авторы называют эту систему экспертной и связывают определение ее назначения с анализом ее возможностей, проведенных Клодом Шенноном и Марвином Минским.

Эти работы положили началу исследованиям в области ИИ, связанному с разработкой программ, решающих задачи на основе применения разнообразных эвристических методов и правил. Эвристика — совокупность логических приемов и методических правил, теоретического Исследования и отыскания истины, методика поиска доказательств. Эвристические правила — неформальные правила, используемые в целях повышения эффективности поиска в данной предметной области.

Данный метод решения задачи при этом рассматривался как свойственный человеческому мышлению «вообще», для которого характерно возникновение «догадок» о пути решения с последующей проверкой их. Эвристическому методу противопоставлялся используемый в ЭВМ алгоритмический (процедуральный, процедурный) метод, который интерпретировался как механическое осуществление заданной последовательности шагов, детерминированно приводящей к правильному ответу. Такая трактовка эвристических методов решения задачи и обусловила появление и распространение термина «искусственный интеллект».

В 70—80 гг. исследования в области ИИ характеризовались перемещением внимания специалистов от проблем создания автономно функционирующих систем к созданию человеко-машинных систем, интегрирующих в единое целое интеллект человека и способности ЭВМ для достижения общей цели - решения задачи, поставленной перед подобной системой. Многие считали, что это позволит создать новое направление информационных технологий — машинную экспертизу, которая заменит труд специалиста. Однако в силу ряда причин эти ожидания не вполне оправдались.

Тем не менее, в последнее десятилетие это направление возродилось в виде исследований и разработок, направленных на создание экспертных систем с базой знаний. Их используют в управленческой деятельности и многих отраслях экономики (страховании, банковском деле и др.), чтобы с помощью правил и объектов, суммирующих накопленный опыт, повысить качество принимаемых решений.

Проблематика ИИ в настоящее время довольно обширна. Список Дисциплин по искусственному интеллекту постоянно увеличивается. Сегодня в него входят представление знаний, решение задач, экспертные системы, средства общения с ЭВМ на естественном языке, обучение, когнитивное моделирование, обработка визуальной информации, робототехника, нейрокомпьютерные технологии и др.

Представление знаний — наиболее важная область исследований по искусственному интеллекту, основа всех остальных дисциплин. Знания имеют форму описаний объектов, взаимосвязей и процедур. Наличие адекватных знаний и способность их эффективно использовать означают «умение».

Создание общей теории или метода представления знаний является стратегической проблемой. Такая теория открыла бы возможность накопления знаний, которые нужны ежедневно для решения все новых и новых задач. Однако для достижения поставленной цели необходимо найти способ выражения общих закономерностей предметных областей (ПО), в чем и состоит суть проблемы представления знаний.

Решение задач сводится к поиску пути из некоторой исходной точки в целевую. Человек делает это весьма эффективно с помощью дедуктивного логического вывода (рассуждения), процедурального анализа, аналогии и индукции. Люди способны также учиться на собственном опыте. Компьютеры в общем случае решают задачи только с использованием дедуктивного логического вывода и процедурального анализа.

Тип задачи определяет метод, наиболее подходящий для ее решения. Задачи, которые сводятся к процедуральному анализу, вообще говоря, лучше всего решаются на компьютере. Учетные и аналитические задачи служат примерами процедуральных задач, решаемых компьютером быстрее и надежнее, чем человеком. Задачи же, связанные с использованием аналогии или индукции, эффективнее решаются человеком. Задачи, требующие дедуктивных и индуктивных рассуждений, представляются наиболее вероятными кандидатами для решения с помощью экспертных систем (систем, основанных на знаниях).

Экспертные системы представляют собой класс компьютерных программ, которые выдают советы, проводят анализ, выполняют классификацию, дают консультации и ставят диагноз. Они ориентированы на решение задач, обычно требующих проведения экспертизы человеком-специалистом. В отличие от программ, использующих процедуральный анализ, экспертные системы решают задачи в узкой предметной области (конкретной области экспертизы) на основе логических рассуждений. Такие системы часто способны найти решение задач, которые неструктурированно плохо определены. Они справляются с отсутствием структурированности путем привлечения эвристик, что может быть полезным в тех ситуациях, когда недостаток необходимых знаний или времени исключает возможность проведения полного анализа.

Машины обладают собственным языком для представления знаний и решения задач, т. е. набором символов, используемых для представления знаний (семантика), и правил, предназначенных для обработки этих символов (синтаксис) и решения задач. Человек работает наиболее эффективно, если он владеет специальными языками, которые развиваются до уровня потребностей конкретной предметной области.

Если правила трансляции с естественного языка в машинный и наоборот выражены в виде совокупности знаний (символов и процедур), то логично предположить, что могут быть разработаны средства, позволяющие компьютеру понимать постановку задачи на естественном языке, а затем на естественном же языке выдавать ее решение. Это основная тема исследований по разработке средств общения с ЭВМ на естественном языке. Здесь можно выделить четыре ключевые проблемы:

Машинный перевод — использование компьютеров для перевода текстов с одного языка на другой.

Информационный поиск — обеспечение с помощью компьютеров доступа к информации по конкретной тематике, хранящейся в большой базе данных.

Генерация документов — применение компьютеров для преобразования документов, имеющих определенную форму или заданных на специализированном языке, в эквивалентный документ в другой форме или на другом языке.

Взаимодействие с компьютером — организация диалога между пользователем и компьютером.

Считается, что способностью обучения должна быть наделена практически каждая прикладная программа, которая может понадобиться пользователю. Пятнадцать — двадцать лет назад большая часть обработки данных при решении задач проводилась программистами вычислительных центров. Они фактически выполняли роль посредников, являясь как бы связующим звеном между ЭВМ и теми, кто использовал полученные данные и принимал решения. С появлением персонального компьютера взаимоотношения между пользователем и вычислительной техникой, а следовательно, и роль программиста резко изменились. Вместо того чтобы заставлять пользователя преодолевать сложности программирования, проще обучить компьютер сложностям выполнения конкретной задачи. Это, конечно, не означает, что необходимость в программистах отпадет, но несколько изменяет их роль во взаимоотношениях между компьютером и конечными пользователями.

Цель когнитивного моделирования — разработка теории, концепций и моделей человеческого мышления и его функций. Оно позволяет реализовывать не только диагностические и лечебные функции, но и выявлять процессы, протекающие в сознании человека при решении задач. Однако отсюда вовсе не следует, что лучшими компьютерами являются те, которые моделируют работу человеческого мозга, но можно сделать вывод о том, какого типа компьютеры нужны, как спроектировать компьютер, который бы расширил возможности мышления человека и позволил бы ему более эффективно решать задачи.

Современные роботы уже облегчили труд (особенно неквалифицированный) многих рабочих, занятых в сфере производства, безупречно выполняя свою работу. Исследования в области робототехники являются составной частью исследований искусственного интеллекта, ставящих целью оснастить компьютеры средствами визуальной обработки и манипулирования объектами в некоторой среде. Эти исследования ведутся в трех основных направлениях:

· разработка воспринимающих элементов (в частности, для визуальной информации) и распознавание информации, поступающей от систем восприятия;

· создание манипуляторов и систем управления ими;

· выявление эвристик для решения задач перемещения в пространстве и манипулирования объектами (планирование деятельности).

Анализ разработок в области нейрокомпьютерных систем позволил выделить перспективные основные направления современного развития нейрокомпьютерных технологий: нейропакеты, нейросетевые экспертные системы, системы управления базами данных и базами знаний с включением нейросетевых алгоритмов, обработка изображений, управление динамическими системами и обработка сигналов, управление финансовой деятельностью, оптические нейрокомпьютеры, виртуальная реальность.

Знания и модели их представления

Для специалистов в области искусственного интеллекта термин «знания» означает информацию, которая необходима программе, чтобы она вела себя «интеллектуально».

Функционирование средств интеллектуального интерфейса опирается на развитые методы работы со знаниями: их представление, хранение, преобразование и т. п.

Под термином «знания» при этом понимается вся совокупность информации, необходимой для решения задачи, включающая в себя, в том числе информацию о:

· системе понятий предметной области, в которой решаются задачи;

· системе понятий формальных моделей, на основе которых решаются задачи;

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 267
Бесплатно скачать Реферат: Создание и развитие искусственного интеллекта