Реферат: Создание и развитие искусственного интеллекта

Выполните необходимое число циклов по наращиванию базы знаний, каждый из которых включает добавление знаний, проверку их непротиворечивости и модификацию с целью устранения обнаруженных несогласованностей.

Модели приобретения знаний

Процесс приобретения знаний — наиболее сложный этап разработки экспертной системы, поскольку инженер знаний (программист) плохо разбирается в предметной области, а эксперт не знает программирования. В связи с этим лексика, используемая экспертом, не понятна инженеру знаний, и чтобы уточнить все вопросы, требуется совместная работа эксперта и инженера знаний. Одна из наиболее сложных задач инженера знаний — помочь эксперту структурировать знания о проблеме.

В выполнении всех задач, возникающих в процессе приобретения знаний, могут принимать участие эксперт, инженер знаний и экспертная система. В зависимости оттого, кто выполняет задачу, можно выделить различные модели приобретения знаний.

Существуют, по меньшей мере, три уровня методов оснащения системы экспертными знаниями:

Это этап создания алгоритма, взятого из литературы или придуманного специалистами или проектировщиком системы, и преобразование его в программу самими проектировщиками. В настоящее время большинство ЭС именно такие. Проектировщики системы должны путем изучения теорий в предметной области, анализа работ или через беседы с экспертами сами преобразовать знания в программы.

Программа может заполнить пробелы в знаниях, например из литературы, описывая объекты или формируя этапы работ.

Программа самостоятельно приобретает алгоритмические знания, «читая книги». Это интеллектуальные способности высокого уровня, которые позволяют не только каким-то образом усвоить содержание книг, но и использовать информацию как подсказку или совет.

Итак, рассмотрим модели приобретения знаний.

В разных работах по искусственному интеллекту взаимодействие с разрабатываемой системой осуществлял только программист. При разработке системы программист не отделял знания (данные) от механизма вывода. В его задачу входило освоить с помощью эксперта предметную область и затем при разработке системы выступать в роли и эксперта, и программиста.

Модель взаимодействия эксперта с системой на ранних этапах развития искусственного интеллекта

В этой модели все задачи по приобретению знаний выполнял программист. Недостаточное знание им области экспертизы не позволяло гарантировать полноту и непротиворечивость знаний. Кроме того, неизбежные модификации системы обусловливали невозможность сохранения однажды достигнутой непротиворечивости знаний.

Модель приобретения знаний ЭС с помощью инженера знаний.

Последующие разработки систем искусственного интеллекта основывались на отделении знаний от программ и оформлении знаний в виде простых информационных структур, называемых базами знаний. В этом случае эксперт взаимодействует с системой либо непосредственно, либо через инженера знаний.

Преимущество данной модели по сравнению с предыдущей в том, что база знаний упрощает модификацию знаний, а важным недостатком является ее большая трудоемкость.

Модель приобретения знаний ЭС с помощью интеллектуального редактора

Эксперт, имеющий минимальные знания в области программирования, может взаимодействовать с экспертной системой через интеллектуальный редактор, без посредничества инженера знаний.

В этой модели интеллектуальный редактор должен обладать развитыми диалоговыми способностями и значительными знаниями о структуре базы знаний (т. е. метазнаниями). Интеллектуальный редактор может быть включен в состав экспертной системы. С его помощью эксперт (с минимальной помощью инженера знаний) определяет необходимость модификации знаний и извлечения новых знаний.

Модель приобретения знаний ЭС с помощью индуктивной программы

Если рассматривать такую модель, где ЭС будут приобретать знания аналогично тому, как это делает эксперт-человек, то работа модели будет заключаться в том, что индуктивная программа будет анализировать данные, содержащие сведения о некоторой области экспертизы, автоматически формируя значимые отношения и правила, описывающие предметную область.

При использовании данной модели предполагается, что в базе знаний в явном виде хранятся конкретные факты о предметной области, задача индуктивной программы — сделать значимые обобщения. Основным достоинством этой модели является автоматизация всех задач по приобретению знаний. В этой области сделаны уже конкретные разработки, так, создан ряд экспериментальных программ, осуществляющих индуктивные обобщения.

Модель приобретения знаний ЭС с помощью программы понимания текстов

Дальнейшие перспективы развития экспертных систем связываются с приобретением знаний непосредственно из текстов на естественном языке. В данном случае требуется читать обычные печатные тексты (книги, статьи и т. д.) и извлекать из них знания, т. е. понимать текст, схемы, графики и т. п. Сложность здесь состоит не только в обработке естественного языка, но и в необходимости воссоздать по тексту модель некоторой проблемной области.

Следует отметить, что все рассмотренные модели приобретения знаний различаются с точки зрения их независимости от эксперта. Модели приведены в порядке возрастания этой независимости, т. е. в порядке увеличивающейся степени автоматизации процесса приобретения знаний. В настоящее время наиболее широко распространена модель приобретения знаний от эксперта через посредничество инженера знаний. С другой стороны, популярна модель, использующая интеллектуальный редактор для организации диалога с экспертом без посредника — инженера знаний. Создан ряд программных средств для поддержки такого рода диалога.

Разработка ЭС — до сих пор весьма длительный и трудоемкий процесс, наиболее узким местом которого является приобретение знаний, т. е. извлечение, структурирование, представление, отладка (обеспечение полноты, непротиворечивости знаний, гарантия качества решений и т. п.) и сопровождение знаний. Эта проблема усугубляется тем, что существующие на сегодняшний день инструментальные средства поддерживают не все этапы разработки ЭС, а только этапы формализации, выполнения и тестирования. При этом ранние, наиболее неформальные этапы (идентификации и концептуализации) практически не поддержаны существующими инструментальными средствами, проблема также состоит в том, что без постоянного обслуживания и совершенствования экспертами сложные ЭС теряют (в связи с изменением окружения) эффективность и точность предлагаемых решений.

С целью резкого сокращения сроков и снижения стоимости создания ЭС разрабатываются различные инструментальные средства. Это позволит, по мнению зарубежных специалистов, сократить затраты на разработку ЭС примерно в 10 раз. Поскольку этап приобретения знаний, наиболее длительный и трудоемкий, упор делается именно на возможную автоматизацию этого этапа. Основу таких средств составляют специальные оболочки и ИС, а также системы создания и поддержания баз знаний.

Специализированные оболочки и ИС ориентируются на определенный тип приложений. Ряд специалистов подразделяет эти ЭС на проблемно-специализированные и предметно-специализированные.

Под первыми ИС имеются в виду ЙС, ориентированные хоть и на специфическую проблему, но охватывающую довольно широкую область приложений (например, диагностические приложения). Под вторыми ИС имеются в виду ИС, ориентированные на специфическую проблему, охватывающую узкую область приложений. Разделение ИС на два класса весьма условно и вызвано тем, что они содержат в себе существенно различное количество предварительных знаний о конкретном приложении. В проблемно-специализированных ИС содержится только общая структура знаний и не содержатся специфические знания о приложении. Таким образом, предметно-специализированные ИС можно рассматривать не только как ИС, но и как незавершенное приложение с достаточно развитой базой знаний, которую разработчик только дополняет, а не создает заново.

Все это позволяет существенно упростить, ускорить и удешевить процесс приобретения знаний.

Системы создания и поддержания базы знаний предназначены для автоматизации процесса приобретения знаний на всех этапах разработки ЭС. Подобная система обычно ориентируется на класс ИС (в первую очередь, на класс оболочек ЭС). По этой причине в отличие от оболочек ЭС или, как иногда говорят, оболочек применения, эти системы называют оболочками приобретения знаний. Такие специализированные ИС, ориентированные на приобретение знаний, в настоящее время, как правило, не выделяются в самостоятельный продукт, а поставляются на рынок в составе ИС общего назначения.

К-во Просмотров: 270
Бесплатно скачать Реферат: Создание и развитие искусственного интеллекта