Реферат: Спектральные характеристики
В первой части работы я поставил себе цель описать линейные операторы в целом, а также подробно рассказать о важной характеристике спектра операторов – спектральном радиусе.
В этой части работы я подробнее остановлюсь на не менее важной характеристике спектров – резольвенте, и расскажу о связи этой характеристики с подвидами спектра оператора – с остаточным, точечным и непрерывными его частями. Вначале, опять же, необходимо остановиться на некоторых основных определениях и понятиях теории линейных операторов. Итак:
- Пусть A - оператор, действующий в конечномерном линейном пространстве E. Спектром оператора называется множество всех его собственных значений.
- Квадратную матрицу n×n можно рассматривать как линейный оператор в n-мерном пространстве, что позволяет перенести на матрицы «операторные» термины. В таком случае говорят о спектре матрицы .
- Пусть A - оператор, действующий в банаховом пространстве E над полем k. Число λ называется регулярным для оператора A, если оператор R(λ) = (A − λI)-1 , называемый резольвентой оператора A, определён на всём E и непрерывен.
- Множество регулярных значений оператора A называется резольвентным множеством этого оператора, а дополнение резольвентного множества - спектром этого оператора.
- Максимум модулей точек спектра оператора A называется спектральным радиусом этого оператора и обозначается через r(A). При этом выполняется равенство:
Это равенство может быть принято за определение спектрального радиуса,приусловии существования данного предела.
Теперь рассмотрим состав самого спектра. Он неоднороден, и состоит из следующих частей:
- дискретный (точечный) спектр - множество всех собственных значений оператора A - только точечный спектр присутствует в конечномерном случае;
- непрерывный спектр - множество значений λ, при которых резольвента (A - λI)-1 определена на всюду плотном множестве в E, но не является непрерывной;
- остаточный спектр - множество точек спектра, не входящих ни в дискретную, ни в непрерывную части.
Таким образом, мы видим, что спектр оператора состоит из 3-х больших частей, принципиально различных.
Свойства резольвенты
Теорема 1 : ограничен. Тогда является регулярной точкой.
Доказательство. . Пусть. Тогда .
- банахово, , причем он ограничен:
Резольвента существует и ограничена. Чтд.
Теорема 2: не принадлежит точечному спектру осуществляет биекцию на .
Доказательство.
- Если построена биекция, то не существует , за исключением тривиальной.
- Если - точка точечного спектра, то , что противоречит биективности .
Теорема 3: (Тождество Гильберта)
Доказательство.
,,
,верно => Чтд.
Следствия:
1) - коммутативность резольвенты.
--> ЧИТАТЬ ПОЛНОСТЬЮ <--