Реферат: Спектральные характеристики

В первой части работы я поставил себе цель описать линейные операторы в целом, а также подробно рассказать о важной характеристике спектра операторов – спектральном радиусе.

В этой части работы я подробнее остановлюсь на не менее важной характеристике спектров – резольвенте, и расскажу о связи этой характеристики с подвидами спектра оператора – с остаточным, точечным и непрерывными его частями. Вначале, опять же, необходимо остановиться на некоторых основных определениях и понятиях теории линейных операторов. Итак:

- Пусть A - оператор, действующий в конечномерном линейном пространстве E. Спектром оператора называется множество всех его собственных значений.

- Квадратную матрицу n×n можно рассматривать как линейный оператор в n-мерном пространстве, что позволяет перенести на матрицы «операторные» термины. В таком случае говорят о спектре матрицы .

- Пусть A - оператор, действующий в банаховом пространстве E над полем k. Число λ называется регулярным для оператора A, если оператор R(λ) = (A − λI)-1 , называемый резольвентой оператора A, определён на всём E и непрерывен.

- Множество регулярных значений оператора A называется резольвентным множеством этого оператора, а дополнение резольвентного множества - спектром этого оператора.

- Максимум модулей точек спектра оператора A называется спектральным радиусом этого оператора и обозначается через r(A). При этом выполняется равенство:


Это равенство может быть принято за определение спектрального радиуса,приусловии существования данного предела.

Теперь рассмотрим состав самого спектра. Он неоднороден, и состоит из следующих частей:

- дискретный (точечный) спектр - множество всех собственных значений оператора A - только точечный спектр присутствует в конечномерном случае;

- непрерывный спектр - множество значений λ, при которых резольвента (A - λI)-1 определена на всюду плотном множестве в E, но не является непрерывной;

- остаточный спектр - множество точек спектра, не входящих ни в дискретную, ни в непрерывную части.

Таким образом, мы видим, что спектр оператора состоит из 3-х больших частей, принципиально различных.

Свойства резольвенты

Теорема 1 : ограничен. Тогда является регулярной точкой.

Доказательство. . Пусть. Тогда .

- банахово, , причем он ограничен:

Резольвента существует и ограничена. Чтд.

Теорема 2: не принадлежит точечному спектру осуществляет биекцию на .

Доказательство.

- Если построена биекция, то не существует , за исключением тривиальной.

- Если - точка точечного спектра, то , что противоречит биективности .

Теорема 3: (Тождество Гильберта)

Доказательство.

,,

,верно => Чтд.

Следствия:

1) - коммутативность резольвенты.

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 205
Бесплатно скачать Реферат: Спектральные характеристики