Реферат: Спектральный анализ и его приложения к обработке сигналов в реальном времени

· 1.7.2. Процедуры оценки частоты в пространстве сигнала.

· 1.7.3. Оценки частоты в пространстве шума.

Глава 2. Экспериментальный анализ алгоритмов спектрального анализа .

Особенности реализации .

Заключение .

Выводы .

Приложени e А . Смещение периодограммы Уэлча.

Приложени e В . Методы и интерфейсы межзадачного системного и межсистемного обмена в среде Windows ’95 (Delphi 3.0)

Приложени e С . Достоверность полученных оценок спектральной плотности мощности.

Приложени e D . Таблица экспериментальных результатов по разрешающей способности методов спектрального анализа.

Приложени e E . Таблица и графики «Слабые синусоидальные составляющие »

Приложени e F . Дисперсии оценок СПМ как функции частоты.

Приложени e G . Таблица наилучших в смысле структурной устойчивости параметров адаптивного градиентного метода.

Приложени e Н . Графики оценок СПМ при различных значениях порядка авторегрессионной модели.

Приложени e I . Список используемой литературы.

Введение

Спектральный анализ - это один из методов обработки сигналов, который позволяет охарактеризовать частотный состав измеряемого сигнала. Преобразование Фурье является математической основой, которая связывает временной или пространственный сигнал (или же некоторую модель этого сигнала) с его представлением в частотной области. Методы статистики играют важную роль в спектральном анализе, поскольку сигналы, как правило, имеют шумовой или случайный характер. Если бы основные статистические характеристики сигнала были известны точно или же их можно было бы без ошибки определить на конечном интервале этого сигнала, то спектральный анализ представлял бы собой отрасль точной науки. Однако в действительности по одному-единственному отрезку сигнала можно получить только некоторую оценку его спектра.[1]

К обработке сигналов в реальном масштабе времени относятся задачи анализа аудио, речевых, мультимедийных сигналов, в которых помимо трудностей, связанных непосредственно с анализом спектрального содержания и дальнейшей классификацией последовательности отсчетов (как в задаче распознавания речи) или изменения формы спектра - фильтрации в частотной области (в основном относится к мультимедийным сигналам), возникает проблема управления потоком данных в современных вычислительных системах. Реальность накладывает отпечаток как на сами вычислительные алгоритмы, так и на результаты экспериментов, поднимая вопросы, с которыми не сталкиваются при обработке всей доступной информации.

При обработке сигналов обычно приходится решать задачи двух типов - задачу обнаружения и задачу оценивания. При обнаружении нужно дать ответ на вопрос, присутствует ли в данное время на входе некоторый сигнал с априорно известными параметрами. Оценивание - это задача измерения значений параметров, описывающих сигнал [1].

Сигнал часто зашумлен, на него могут накладываться мешающие сигналы. Поэтому для упрощения указанных задач сигнал обычно разлагают по базисным составляющим пространства сигналов. Для многих приложений наибольший интерес представляют периодические сигналы. Вполне естественно, что используются Sin и Cos . Такое разложение можно выполнить с помощью классического преобразования Фурье.

При обработке сигналов конечной длительности возникают интересные и взаимозависимые вопросы, которые необходимо учитывать в ходе гармонического анализа. Конечность интервала наблюдения влияет на обнаружимость тонов в присутствии сильных шумов, на разрешимость тонов меняющейся частоты и на точность оценок параметров всех вышеупомянутых сигналов.

Постановка проблемы , формулировка задачи

На настоящее время существует большое количество алгоритмов и групп алгоритмов, которые так или иначе решают основную задачу спектрального анализа: оценивание спектральной плотности мощности, с тем чтобы по полученному результату судить о характере обрабатываемого сигнала .Основной вклад сделан такими исследователями как: Голд Б. (Gold B.), Рабинер Л. (Rabiner L.R.), Бартлетт M. (Bartlett M.S.) Однако каждый из алгоритмов имеет свою область приложения. Например, градиентные адаптивные авторегрессионные методы не могут быть применены к обработке данных с быстро меняющимся во времени спектром. Классические методы имеют широкую область применения, но проигрывают авторегрессионным и методах, основанных на собственных значениях, по качеству оценивания. Но в реальном масштабе времени использование последних затруднено из-за вычислительной сложности.

К-во Просмотров: 308
Бесплатно скачать Реферат: Спектральный анализ и его приложения к обработке сигналов в реальном времени