Реферат: Способы кодирования информации и порядок преобразования десятичных чисел в двоичные и наоборот в информатике

Здесь каждый из коэффициентов аn, an-1 ,···,a1, a0 является одной из двух двоичных цифр 0 или 1, причем an=1. Запись числа в двоичной системе строится так же, как и в десятичной: первой записывается цифра ап, второй — цифра ап-1 и т.д.,

последней — цифра а0.

Двоичный код числа — запись этого числа в двоичной системе счисления.

Таким образом, двоичным кодом числа является последовательность коэффициентов ап an-1 ··· a1 a0 из представления (2). В приведенных примерах двоичные коды имели вид:

0 = 02
1 = 12
2 = 102
3 = 112
4 = 1002
5 = 1012
6 = 1102
7 = 1112
25 = 110012
120 = 11110002

Коэффициенты в представлении (2) должны принимать только одно из двух значений: 0 или 1. Это обеспечивает однозначность такого представления.

Если какой-либо из коэффициентов больше 1, то происходит переход к следующей степени числа 2.

Например:

2·2n=1·2n+1; 3·2n=(2+1) ·2n=1·2n+1+1·2n.

Старший коэффициент аn всегда равен 1, т.е. двоичный код всегда начинается с 1 (так же, как и десятичная, запись числа не может начинаться с нуля). Чтобы лучше понимать, как получается двоичный код некоторого числа, представим себе последовательность разрядов, каждый из которых может содержать только одну из двоичных цифр 0 или 1, т.е. один бит информации. В дальнейшем под битом и разрядом будем понимать одно и то же.

Пронумеруем разряды справа налево. Номер самого правого (младшего) разряда равен нулю. Номер самого левого (старшего) разряда равен показателю наибольшей степени двойки, содержащейся в числе. Значит, всего разрядов, с учетом нулевого, на один больше, чем номер старшего разряда (если номер старшего разряда равен 7, то всего разрядов 8 с номерами от 0 до 7). Номер каждого разряда равен показателю соответствующей степени двойки.

n n-1 1 0

2n 2n-1 21 20

Содержимое разряда с номером n равно 1, если 2n участвует в представлении числа в виде суммы степеней двойки, и 0, если не участвует.

Посмотрим, как получается двоичное представление, например, числа 25. Число 25 представляется в виде суммы чисел из этой строки: 25=16+8+1. Каждое число берется только один раз — это обеспечивает однозначность двоичного кода. Затем выбранные числа заменяются равными им степенями двойки из верхней строчки таблицы: 16=24, 8=23, 1=20; 25=24+23+20. И, наконец, разряды, номера которых равны числам, выбранным из первой строчки таблицы (4,3,0) заполняются единицами, а остальные — нулями.

25=16+8+1=24+23+20=
=1·24+1·23+0·22+0·21+1·20
n 4 3 2 1 0
an 1 1 0 0 1

4. Сколько чисел можно записать с помощью n битов

Уже описано, как получать двоичный код любого десятичного числа, т.е. переводить его из десятичной системы в двоичную. Рассмотрим теперь обратное действие: перевод числа из двоичной системы счисления в десятичную.

Итак, требуется найти десятичное число по известному двоичному коду этого числа. Воспользуемся представлением вида (2). Коэффициенты аn, an-l ,···,a1, a0 известны. Значит, нужно вычислить значение выражения (2). Рассмотрим примеры. Пусть задан двоичный код 11012. Самый левый — старший бит — имеет номер 3. Следовательно, первое слагаемое равно 1·23. Следующий бит имеет номер 2. Второе слагаемое равно 1·22. Третье слагаемое равно 0·21 четвертое слагаемое равно 1·20. Искомое число есть сумма четырех слагаемых: 1·23+1·22+0·21+1·20=8+4+1=13. Таким образом, 11012=13.

Пусть задан двоичный код 11010112. Число, имеющее такой двоичный код, равно сумме 1·26+1·25+0·24+1·23+0·22+1·21+1·20=64+32+8+2+1=107.

Следовательно, 11010112=107.

В десятичной системе следующее число получается из предыдущего путем прибавления единицы к количеству единиц предыдущего числа.

То же самое происходит при получении двоичного кода следующего числа из двоичного кода предыдущего: к младшему разряду двоичного кода предыдущего числа прибавляется единица.

Правило выполнения операции сложения одинаково для всех систем счисления: если сумма складываемых цифр больше или равна основанию системы счисления, происходит перенос единицы в следующий слева разряд. Таким образом, правила сложения в двоичной системе таковы:

Пользуясь этими правилами, получаем

+ 112
12
1002=410
+ 102
12
112=310
+ 1002
12
1012=510
+ 1012
12
1102=610
+ 1102
12
1112=710
+ 1112
12
10002=810

Возникает вопрос: какое наибольшее десятичное число можно записать в двоичном виде, используя для этой записи заданное число битов?

Наибольшее десятичное число, использующее для записи своего двоичного кода три бита, получается, когда значения всех трех битов равны единице:

1 1 1 =1·22+1·21+1·20=22+21+20=4+2+1=7.
8= 1 0 0 0
(????? ??? ??, ??? ? ?????????? ???????, ?????????? ?????, ????????? ?? ???? ????, ? 999, ????????, ????? ?????? ?? ???? ????????? ???? ???????????? ????????, ?????? 9). ???????, ??? 7=8-1=23-1. ????? ??????????? ????????? ?? 7 ????? 8 (=23), ??????????? ??? ?????? ????: . ??????, ????????? ??? ????, ????? ?????????? ?????? ?????????? ????? ?? 0 ?? 7.

А если для записи десятичного числа в двоичном виде используется четыре бита? Наибольшее число, двоичный код которого состоит из четырех битов, равно 15: в его двоичном коде все четыре бита, равны единице: 15 = 11112. Снова заметим, что 15=16-1=24-1; для записи следующего за 15 числа 16 нужно уже пять битов. Так что используя четыре бита, можно записывать числа от 0 до 15 (всего 16 = 24 чисел). Уже понятно, что наибольшее число, использующее для своей двоичной записи а битов, равно 2n -1. Следующее за ним число 2n требует для своей записи n+1 бит. Таким образом, используя п битов, можно записывать двоичные коды чисел от 0 до 2n -1, всего 2n чисел.

5. Как измеряется количество информации в компьютере

В информатике принято рассматривать последовательности битов длиной 8. Такая последовательность называется байтом и является следующей за битом единицей измерения количества информации в компьютере.

С помощью одного байта можно записывать двоичные коды 28 = 256 чисел от 0 до 255. Байты объединяются в последовательности длиной 1024 (=210). Такая последовательность называется килобайтом (Кбайт) и также используется для измерения количества информации в компьютере. Обычно приставка «кило-» обозначает, что берется 1000 единиц измерения. Например, 1 килограмм равен 1000 граммам, 1 километр равен 1000 метрам. Ближайшее к тысяче число, являющееся степенью числа 2, есть 210=1024. Именно 1024 байта и называется килобайтом (Кбайт).

Последовательность из 1024 Кбайтов называется мегабайтом (Мбайт), из 1024 Мбайтов — гигабайтом (Гбайт), из 1024 Гбайтов — терабайтом (Тбайт).

К-во Просмотров: 128
Бесплатно скачать Реферат: Способы кодирования информации и порядок преобразования десятичных чисел в двоичные и наоборот в информатике