Реферат: Способы кодирования информации и порядок преобразования десятичных чисел в двоичные и наоборот в информатике
Итак, с помощью двоичных кодов цифры и их последовательности (числа) становятся понятными компьютеру. Процесс преобразования информации представляется в виде схемы:
Информация | Числа | Двоичные коды |
Эта схема, читаемая слева направо, отображает способ поступления информации извне в компьютер. Преобразование входной информации в двоичные коды выполняют устройства ввода информации. Эта же схема, читаемая справа налево, отображает способ представления результатов работы компьютера — выходной информации. Преобразование двоичных кодов результирующих данных в выходную информацию выполняют устройства вывода информации.
Память компьютера содержит информацию только в двоичном виде (в виде 0 и 1), и ЦП выполняет действия только с данными, представленными в двоичной системе.
6. Шестнадцатеричная система счисления
Шестнадцатеричная система счисления — это система счисления, в которой основанием является число 16. Любое целое положительное число представляется в этой системе с помощью степеней числа 16 в виде
Шестнадцатеричной записью целого положительного числа является последовательность коэффициентов ап an-1 ... al a0 из представления (3).
Например:
31210=25610+4810+810=1·162+3·161+8·160=13816.
Для того чтобы представление числа в шестнадцатеричной системе было однозначным, значения коэффициентов при степенях числа шестнадцать должны быть целыми числами от 0 до 15. Если значение коэффициента взять равным 16, то умножение какой-то степени числа 16 на этот коэффициент дает следующую степень числа 16: 16·16n=1·16n+1; 25·16n=(16+9) ·16n=1·16n+1+9·16n.
В качестве коэффициентов для записи чисел в шестнадцатеричной системе берутся шестнадцать символов: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, А, В, С, D, Е, F. Они называются шестнадцатеричными цифрами. Десятичные цифры 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 сохраняют свои значения и в шестнадцатеричной системе: 010=016, 110=116, 910=916. Символы А, В, С, D, Е, F соответствуют десятичным числам от 10 до 15:
1010 | = | A | 1310 | = | D |
1110 | = | B | 1410 | = | E |
1210 | = | C | 1510 | = | F |
Рассмотрим примеры перехода от записи чисел в десятичной системе к их записи в шестнадцатеричной системе:
2710=1610+1110=1·161+1110·160=1·161+B·160=1B16.
Введение шестнадцатеричных цифр А, В, С, D, Е, F является необходимым, т.к. при использовании в качестве коэффициентов в записи шестнадцатеричных чисел 10, 11,...15 появляется неоднозначность в их прочтении. Следующий пример демонстрирует, как в таком случае можно прочесть одно число тремя различными способами:
11016 | = | 1·162 | + | 1 | · | 161 | + | 0 | · | 160 | = | 27210 |
11016 | = | 11 | · | 161 | + | 0 | · | 160 | = | 17610 | ||
11016 | = | 1 | · | 161 | + | 10 | · | 160 | = | 2610 |
Использование шестнадцатеричных цифр приводит к однозначному прочтению чисел:
27210 | = | 11016 |
17610 | = | B016 |
2610 | = | 1A16 |
Применение шестнадцатеричной системы счисления в информатике удобно в связи с тем, что содержимое одного байта можно записать двумя шестнадцатеричными цифрами. Действительно, для записи любой шестнадцатеричной цифры достаточно четырех битов. Максимальная шестнадцатеричная цифра F=1510 имеет двоичный код 1111. Один байт - это 8 битов, которые можно разделить на две части: четыре младших бита с номерами от 0 до 3 и четыре старших бита с номерами от 4 до 7.
Содержимое каждой части можно записать одной шестнадцатеричной цифрой, а содержимое байта — двумя: первая — 4 старших бита, вторая — 4 младших бита.
Таким образом, любое число от 0 до 255 (содержимое 1 байта) можно записать двумя шестнадцатеричными цифрами.
7. Кодировка символов
Компьютеры могут обрабатывать только информацию, представленную в числовой форме. При вводе документов, текстов программ и т.д. (например, вводе с клавиатуры) вводимые символы кодируются определёнными числами, а при выводе их для чтения человеком (на монитор, принтер и т.д.) по каждому числу (коду символа) строится изображение символа. Соответствие между набором символов и их кодами называется кодировкой символов.
Как правило, код символа хранится в одном байте, поэтому коды символов могут принимать значения от 0 до 255. Такие кодировки называются однобайтными, они позволяют использовать до 256 различных символов. Впрочем, в настоящее время всё большее распространение приобретает двухбайтная кодировка Unicode, в ней коды символов могут принимать значения от 0 до 65535. В этой кодировке имеются номера для практически всех применяемых символов (букв алфавитов разных языков, математических, декоративных символов и т.д.).
В графической среде Windows кодовые таблицы, разработанные для IBM PC, являются во многом устаревшими. Действительно в Windows, как правило, не требуются так называемые «псевдографические символы», использовавшиеся в текстовом режиме DOS-программ для рисования линий и диаграмм: в Windows можно нарисовать любые линии или диаграммы непосредственно.
При использовании программ для DOS и для Windows пользователь вынужден работать с двумя различными кодировками символов: одна используется в DOS-программах, другая — в Windows-программах. В терминологии Windows первая кодировка называется OEM-кодировкой, вторая — ANSI-кодировкой. Windows содержит стандартные функции для перекодировки из OEM в ANSI и обратно. Многие Windows-программы (редакторы текстов, табличные процессоры и т.д.) при экспорте и импорте файлов в формате программ для DOS автоматически выполняют преобразование из OEM в ANSI и обратно.
Таблица кодировки символов
Выводы
Несмотря на многообразие решаемых с помощью компьютера задач, принцип его применения в каждом случае один и тот же: информация, поступающая в компьютер, обрабатывается с целью получения требуемых результатов. Компьютер может обрабатывать только информацию, представленную в числовой форме. Вся другая информация (звуки, изображения и т.д.) для обработки должна быть преобразована в числовую форму. Для обработки на компьютере текстовой информации обычно при вводе в компьютер каждая буква кодируется определённым числом, а при выводе на внешние устройства для восприятия человеком по этим числам строятся соответствующие изображения букв.
Список литературы
И.Т. Зарецкая, Б.Г. Колодяжный. Информатика. Киев: Форум, 2001.—496 с.
В.Э. Фигурнов. IBM PC для пользователя. Москва: ИНФРА-М, 1999.—480 с.