Реферат: Статистические величины
Вариационные ряды получаются в результате группировок, причем часто группировочные признаки показаны не одной величиной, а в определенных интервалах. Такие ряды называются интервальные.
Вычисление средней из интервального ряда имеет некоторые особенности. Для того, чтобы рассчитать среднюю арифметическую интервального ряда, надо сначала определить среднюю для каждого интервала, а затем - среднюю для всего ряда.
Средняя для каждого интервала определяется как полусумма верхней и нижней границ, т.е. по формуле средней арифметической простой.
Определение варианты как полусуммы верхней и нижней границ интервального ряда исходит из предположения, что индивидуальные значения признака внутри интервала распределяются равномерно и, следовательно, средние значения интервалов достаточно близко примыкают к средней арифметической в каждой группе.
В действительности это не всегда так, поэтому средние, вычисленные из интервальных рядов, являются приблизительными.
Свойства средней арифметической.
Средняя арифметическая обладает некоторыми свойствами, которые определяют ее широкое применение в экономических расчетах и в практике статистического исследования.
Свойство 1. Средняя арифметическая постоянной величины равна этой постоянной:
Свойство 2 (нулевое). Алгебраическая сумма линейных отклонений (разностей) индивидуальных значений признака от средней арифметической равна нулю:
для первичного ряда и для сгруппированных данных (di - линейные (индивидуальные) отклонения от средней, т.е. xi - ).
Это свойство можно сформулировать следующим образом: сумма положительных отклонений от средней равна сумме отрицательных отклонений.
Логически оно означает, что все отклонения от средней в ту и в другую сторону, обусловленные случайными причинами, взаимно погашаются.
Свойство 3 (минимальное). Сумма квадратов отклонений индивидуальных значений признака от средней арифметической есть число минимальное:
что означает: сумма квадратов отклонений индивидуальных значений признака каждой единицы совокупности от средней арифметической всегда меньше суммы квадратов отклонений вариантов признака от любого значения (А), сколь угодно мало отличающегося от средней у выбранной единицы исследуемой совокупности.
Для сгруппированных данных имеем:
Минимальное и нулевое свойства средней арифметической применяются для проверки правильности расчета среднего уровня признака; при изучении закономерностей изменения уровней ряда динамики; для нахождения параметров уравнения регрессии при изучении корреляционной связи между признаками.
Рассмотренные свойства выражают сущностные черты средней арифметической. Существуют также расчетные (вычислительные) свойства средней арифметической, имеющие прикладное значение:
- если значения признака каждой единицы совокупности (все усредняемые варианты) уменьшить или увеличить на одну и ту же величину А, то и со средней арифметической произойдут аналогичные изменения;
- если значения признака каждой единицы совокупности разделить или умножить на какое-либо постоянное число А, то средняя арифметическая уменьшится или увеличится в А раз;
- если вес (частоту) каждого значения признака разделить на какое-либо постоянное число А, то средняя арифметическая не изменится.
В настоящее время вычислительные свойства средней арифметической потеряли свою актуальность в связи с использованием ЭВМ при расчете обобщающих статистических показателей.
Абсолютные и относительные статистические величины.
Результаты статистического наблюдения регистрируются в виде первичных абсолютных величин. Абсолютная величина отражает уровень развития явления. В статистике все абсолютные величины являются именованными, измеряются в конкретных единицах. И в отличие от математического понятия абсолютные величины могут быть .как положительными, так и отрицательными. Абсолютные величины делятся на:
1) Индивидуальные – характеризуют размер признака отдельных единиц совокупности.
2) Суммарные. Характеризуют итоговое значение признака по определённой части совокупности. Они разделяются на:
a) моментные - показывают фактическое наличие на определённый момент или дату.
b) интервальные - итоговый накопленный результат за период в целом. В отличие от моментных, они допускают их последующее суммирование.
Абсолютная величина не даёт представления об изучаемом явлении, не показывает его структуру, соотношение между отдельными частями и развития во времени. Эти функции выполняют относительные показатели. Относительная величина – это обобщающий показатель, который даёт числовую меру соотношения двух сопоставляемых абсолютных величин. Основное условие правильного расчёта относительной величины – это сопоставимость сравниваемых показателей и наличие реальных связей между изучаемыми явлениями. Таким образом, по способу получения относительные показатели всегда величины производные, определяемые в форме коэффициентов, промилле и т.п.
Показатели вариации и способы их расчета.