Реферат: Статистические величины

Коэффициент вариации представляет собой отношение среднего квадратического отклонения к средней арифметической.

Выражая коэффициент вариации в процентах, различные абсолютные среднеквадратические отклонения приводят к одному основанию и дают возможность сравнивать, оценивать колеблемость величин различных признаков. При помощи коэффициента вариации возможно, например, сравнение размера колеблемости производительности труда рабочих, занятых производством различных видов продукции, размера колеблемости урожаев различных сельскохозяйственных культур и т.д.

Чем меньше коэффициент вариации, тем меньше колеблемость признака, и наоборот.

Относительное линейное отклонение определяется как отношение среднего линейного отклонения к средней арифметической в процентах:

Отношение размаха вариации к средней арифметической в процентах называется коэффициентом осцилляции:

Самым распространенным относительным показателем колеблемости признака является коэффициент вариации. Он более точно, чем абсолютный, характеризует различие колеблемости признаков.

По величине коэффициента вариации можно судить о степени вариации признаков совокупности. Чем больше его величина, тем больше разброс значений вокруг средней, тем менее однородна совокупность по своему составу и тем менее представительна средняя.

Коэффициент вариации важен в тех случаях, когда нужно сравнивать средние квадратические отклонения, выраженные в разных единицах измерения.

Мода и медиана.

Мода в статистике – это величина варьирующего признака, который чаще всего встречается в данной совокупности или признак, который имеет наибольшую частоту.

Медиана – это значение признака, которая делит ряд распределения пополам, т.е. по обе стороны этого признака будет находиться одинаковое единиц изучаемого признака.

Мода и медиана – это описательное–среднее. Описательный характер моды и медианы связан с тем, что в них не погашаются индивидуальные отклонения. Они всегда соответствуют определенной варианте.

Основные свойства дисперсии.

Дисперсия обладает рядом математических свойств, использование которых значительно упрощает и облегчает её вычисление. Основные свойства дисперсии:

  1. Дисперсия постоянной величины равна нулю.
  2. Если все значения признака уменьшить или увеличить на какое-то постоянное число, то дисперсия от этого не изменится.
  3. Если все значения признака уменьшить или увеличить в K раз, то дисперсия от этого соответственно увеличится или уменьшится в K2 раз.
  4. Сумма квадратов отклонений индивидуальных значений признака x от их средней меньше суммы квадратов отклонений индивидуальных значений признака от любого данного числа a при условии, что , т.е.

Доказано, что эти две суммы отличаются на квадрат разности между и a

Это свойство дает возможность упрощать расчеты среднего квадратического отклонения путем замены громоздких отклонений от любого произвольно взятого числа, удобного для проведения расчетов, с последующей поправкой.

    Дисперсия признака равна разности между средним квадратом значений признака и квадратом их средней, т.е.

Рассмотрим вычисление дисперсий c применением её свойств.

Один из упрощенных способов вычисления дисперсии основан на следующем равенстве:

Этот способ исчисления дисперсии называется способом моментов или способом отсчета от условного нуля.

Дисперсия альтернативного признака. В ряде случаев возникает необходимость измерить вариацию альтернативного признака. Обозначив отсутствие интересующего признака через "0"; его наличие - через "1"; долю единиц, обладающих данным признаком - через q, исчислим среднее значение альтернативного признака и его дисперсию.

Среднее значение альтернативного признака равно

К-во Просмотров: 607
Бесплатно скачать Реферат: Статистические величины