Реферат: Статистические величины

Величины признаков изменяются под действием различных факторов. Очевидно, что чем разнообразнее условия, влияющие на размер данного признака, тем больше его вариация. Например, размер заработной платы рабочих зависит от нескольких факторов: специальности, разряда, стажа работы, образования, состояния здоровья и т.д. Чем больше различия между значениями факторов, тем больше вариация в уровне заработной платы.

При характеристике колеблемости признака используют систему абсолютных и относительных показателей.

Абсолютные показатели вариации:

  • Размах вариации R = xmax - xmin ;
  • Среднее линейное отклонение
  • Дисперсия
  • Среднеквадратическое отклонение

Абсолютные показатели, кроме дисперсии, измеряются в тех же единицах, что и сам признак.

Относительные показатели вариации:

  • Коэффициент осцилляции
  • Относительное линейное отклонение
  • Коэффициент вариации

Относительные показатели чаще всего выражаются в процентах

Размах колебаний, или размах вариации, представляет собой разность между максимальным и минимальным значениями признака в изучаемой совокупности:

R = xmax - xmin

Безусловным достоинством этого показателя является простота расчета. Однако размах вариации зависит от величины только крайних значений признака, поэтому область его применения ограничена достаточно однородными совокупностями. В частности, на практике он находит применение в предупредительном контроле качества продукции.

Точнее характеризует вариацию признака показатель, основанный на учете колеблемости всех значений признака. Поскольку средняя арифметическая является обобщающей характеристикой свойств совокупности, большинство показателей вариации основано на рассмотрении отклонений значений признака отдельных единиц совокупности от этой величины. К таким показателям относятся среднее линейное отклонение, дисперсия и среднее квадратическое отклонение, представляющие собой среднюю арифметическую из отклонений индивидуальных значений признака от средней арифметической. Среднее линейное отклонение рассчитывается из отклонений в первой степени, дисперсия и среднее квадратическое - из отклонений во второй степени. Так как алгебраическая сумма отклонений индивидуальных значений признака от средней арифметической (согласно нулевому свойству) всегда равна нулю, то для расчета среднего линейного отклонения используется арифметическая сумма отклонений, т.е. суммируются абсолютные значения индивидуальных отклонений значений признака независимо от знака.

Среднее линейное отклонение вычисляется по следующим формулам:

для несгруппированных данных

для сгруппированных данных (вариационного ряда)

Дисперсия - средняя из квадратов отклонений вариантов значений признака от их средней величины.

Дисперсия рассчитывается по следующим формулам:

для несгруппированных данных

для сгруппированных данных (вариационного ряда)

Дисперсия имеет большое значение в статистическом анализе. Однако её применение как меры вариации в ряде случаев бывает не совсем удобным, потому что размерность дисперсии равна квадрату размерности изучаемого признака. В таких случаях для измерения вариации признака вычисляют среднее квадратическое отклонение.

Среднее квадратическое отклонение (представляет собой корень квадратный из дисперсии):

для несгруппированных данных

для вариационного ряда

Дисперсия и среднее квадратическое отклонение недостаточно полно характеризуют колеблемость признака, т.к. показывают абсолютный размер отклонений, что затрудняет сравнение изменчивости различных признаков.

К-во Просмотров: 612
Бесплатно скачать Реферат: Статистические величины