Реферат: Судовые холодильные установки

Помимо поддержания параметров работы СХУ при эксплуатации согласно рассчитанных таблиц рабочих режимов для возможного получения максимального эффекта работы СХУ необходимо разработать график периодичности чистки конденсаторов и оттайки воздухоохладителей, воздухоохладителей т.к. чрезмерное увеличение термического сопротивления труб конденсатора и толщины снеговой шубы на поверхности воздухоохладителей приводит к перерасходу энергии и снижению эффективности работы СХУ.



2. Обоснование темы дипломной работы.



2. Обоснование темы дипломной работы.

Анализ эксплуатации всего многообразия и разнотипности судовых холодильных установок действующего флота рыбной промышленности показывает, что наряду с прогрессом и удачными техническими решениями имеют место много недоработок, непродуманных решений при проектировании схем разводки трубопроводов хладагента, компоновки оборудования. Схемы не имеют недостаточной «гибкости», обеспечивающей многовариантность работы, дающей возможность маневрировать при различных возникающих на промысле условиях работы. Необходимые узлы отсутствуют, и имеются подчас лишние и непродуманные. Примером такой непродуманности может служить судовая холодильная установка БАТМ типа «Пулковский меридиан», где для снятия снеговой шубы горячими парами хладагента предусмотрен специальный предохранитель для получения этих горячих паров за счет тепла подаваемого в испаритель водяного пара. Ошибочность такого решения очевидна: в одну полость испарителя подается горячий пар, а в другую дросселируется хладагент с отрицательной температурой, что вызывает напряженность металла и приводит к нарушению прочности и плотности конструкции.

К отрицательным факторам в этом случае необходимо отнести также потерю полезного объёма занимаемого ненужным оборудованием, и самое главное, здесь имеет место большой расход энергии, что идет в разрез в общей тенденцией на ресурсосбережение в тоже время в схеме этой холодильной установки достаточно сделать незначительные переключения трубопроводов, и тогда, станет возможным отдельная работа на трюмы и морозильные аппараты, и соответственно можно будет попеременно снимать снеговую шубу.

В тоже время на судах типа БМРТ «Пионер Латвии» морозильные аппараты LВН 22.5 обеспечивают аммиаком по безнасосной схеме. Таким образом, отпадает необходимость в оборудовании: два циркулярных ресивера, два аммиачных насоса, множество арматуры, трубопроводов и автоматики, а так же нет надобности затрат на дополнительную энергию на привод аммиачных насосов.

Суда типа БМРТ за период более 40 летней эксплуатации зарекомендовали себя как суда промыслового флота с большой ремонтной пригодностью, хорошими мореходными качествами, удачным выбором соотношения промысловых и мореходных параметров.

Суда типа БМРТ отличаются хорошим состоянием корпуса. Суда этого типа сконструированные и построенные 40 лет назад до настоящего времени находятся в эксплуатации (например, УТС – 3 – БМРТ «Лев Толстой» постройки 1958г.) поэтому, учитывая мореходные, экономические достоинства судов типа БМРТ не исключена в дальнейшем возможность постройки этого судна. Но холодильное оборудование на этом судне морально и физически устарело.

Так морозильные аппараты типа LINOE тележечно-тунельного типа имеют большую долю ручного труда. Компрессоры поршневые ДАУ – 80 ненадёжны в эксплуатации, т.к. при незначительном заливе жидким аммиаком происходит разрушение блока-картера, тоже самое происходит при замерзании воды в охлаждённой рубашке блока.

Холодильная установка имеет низкий уровень автоматизации. Хладагент – аммиак имеет высокую токсичность (при утехах). Поэтому возникает необходимость замены холодильной установки на более современную в достижениях холодильной техники.



3. Описание холодильной установки



3. Описание холодильной установки.

Судовая холодильная установка состоит из двух систем холодильного агента обслуживающих каждый роторный морозильный аппарат FGP-25-3, включающих в себя два тандемных винтовых компрессорных агрегата оснащенных винтовыми КМ S3-900 и КМ S3-315.

KM S3-600 обслуживает грузовые трюма. В состав также входят:

- система кондиционирования воздуха;

- эжекционные кондиционеры;

- система охлаждения провизионных камер из холодильных агрегатов с воздушными конденсаторами;

- система предварительного охлаждения рыбы.

В качестве хладагента использован R22.

Тандемный винтовой компрессорный агрегат состоит из винтовых КМ S3-900 (низкой ступени) и КМ S3-315 (высокой ступени).

Хладопроизводительность агрегата при температуре кипения хладагента -55°С и температуре конденсации 37°С. Привод компрессоров осуществляется от отдельных электродвигателей мощностью 52кВт КMR 225 М2 и 71кВт KMR 250 S2. Общая масса агрегата с учетом массы обоих электродвигателей 4000 кг.

Рабочие вещества холодильной установки: хладагент фреон-22 и холодильное масло ХК-57. Для отделения масла от паров предусмотрен маслоотделитель. Масляной насос производительностью 2 л/мин, минимальным давлением 4кгс/см2 свыше давления из маслоотделителя в КМ S3-900 и S3-315 для смазки, уплотнения и отбора части тепла сжатых паров.

С помощью тандемного двухступенчатого винтового агрегата в системе охлаждения роторного плиточного морозильного аппарата типа FGP-25-3 поддерживается заданная температура кипения.

Для режима замораживания КМ тандемных винтовых компрессорных агрегатов вырабатывают нужный холод.

КМ НД засасывает пар хладагента из отделителя жидкости через регенеративный теплообменник и сжимает его до промежуточного давления.

КМ ВД засасывает пар хладагента, нагнетаемый КМ НД и дальнейшим сжатием его.

Дополнительно КМ ВД засасывает хладагент из переохладителя жидкости вместе с хладагентом, нагнетаемым КМ НД подается в сжатом состоянии через маслоотделитель в кожухотрубные конденсаторы.

Переохладитель жидкости служит для переохлаждения сжиженного хладагента. Переохлаждение достигается путем теплообмена с испаряющимся хладагентом. В маслоотделителе большей частью отделяется масло, уносимое паром хладагента.

В кожухотрубных конденсаторах пар хладагента конденсируется, отдавая тепло охлаждающей воде. Жидкий хладагент поступает в линейный ресивер, затем он протекает через фильтр осушки, который поглощает воду. После этого основной поток жидкого хладагента протекает через систему труб переохладителя жидкости, причем он переохлаждается. Переохлаждение достигается тем, что ещё до переохладителя жидкости отводится частичный поток жидкого хладагента, который дросселируется в переохладитель жидкости через регулирующий вентиль.

Дросселируемый х.а. отнимает тепло от жидкого х.а. и испаряется.

Поток испарившегося х.а. засасывается КМ ВД. Затем основной поток жидкого х.а. протекает через теплообменник для возврата масла. В котором происходит теплообмен со впрыснутым х.а., поступающим от напорного трубопровода насоса х.а.

После этого жидкий х.а. протекает через регенеративный теплообменник до отделителя жидкости. Там проходит теплообмен с х.а. (всасываемым газом), поступающим из отделителя. Затем жидкий х.а., выходящий из регенеративного теплообменника, дросселируется в отделитель жидкости через ручной регулирующий вентиль.

Уровень х.а. в отделителе жидкости поддерживается в определённых пределах посредствам регуляторов уровня жидкости. Насос х.а. засасывает жидкий х.а. от отделителя жидкости и нагнетает его в плиточный морозильный аппарат FGP-25-3, где он отнимает тепло от охлаждаемых плит с продуктом.

К-во Просмотров: 1225
Бесплатно скачать Реферат: Судовые холодильные установки