Реферат: Сущность теории вероятностей

Введение ………………………………………………………..2

Задание №1 …………………………………………………….4

Задание №2 …………………………………………………….5

Задание №3 …………………………………………………….9

Задание №4 …………………………………………………….13

Задание №5 …………………………………………………….14

Задание №6 …………………………………………………….18

Задание №7 …………………………………………………….20

Задание №8 …………………………………………………….23

Задание №9 …………………………………………………….27

Задание №10 …………………………………………………...28

Список использованной литературы ………………………41

Введение

Теорией вероятностей называется математическая наука, изу­чающая закономерности в случайных явлениях. Ее предметом являются специфические закономерности, наблюдае­мые в случайных явлениях.

При научном изучении и описании окружающего мира часто приходится встречаться с особого типа явлениями, которые при­нято называть случайными. Для них характерна большая по срав­нению с другими степень неопределенности, непредсказуемости. Случайное явление — это такое явление, которое при неоднократ­ном воспроизведении одного и того же опыта протекает каждый раз несколько по-иному.

Совершенно очевидно, что в природе нет ни одного явления, в котором не присутствовали бы в той или иной мере элементы слу­чайности. Как бы точно и подробно ни были фиксированы усло­вия опыта, невозможно достигнуть того, чтобы при его повторе­нии результаты полностью и в точности совпадали. Случайные от­клонения неизбежно сопутствуют каждому закономерному явле­нию. Тем не менее в ряде практических задач этими случайными элементами можно пренебречь, рассматривая вместо реального явления его упрощенную схему, «модель», и предполагая, что в данных условиях опыта явление протекает вполне определенным образом. По мере развития науки число учитываемых факторов становится все больше, науч­ный прогноз — все точнее. Это — классическая схема так называе­мых «точных наук» — от условий опыта к его однозначному ре­зультату.

Однако для решения ряда задач такая схема оказывается плохо приспособленной. Это — те задачи, где интересующий нас резуль­тат опыта существенно зависит от столь большого числа факторов, что практически невозможно зарегистрировать и учесть их все. В этих задачах многочисленные второстепенные факторы так тесно связаны с результатом опыта, что ничтожное, на первый взгляд, их изменение может сыграть решающую роль, обусловить «успех» или «неуспех» опыта. В таких случаях классическая схема точных наук — детерминистская — оказывается непригодной.

Методы теории вероятностей не отменяют и не упраздняют случайности, непредсказуемости исхода отдельного опыта, но да­ют возможность предсказать, с каким-то приближением, средний суммарный результат массы однородных случайных явлений. Чем большее количество однородных случайных явлений фигурирует в задаче, тем отчетливее выявляются присущие им специфические законы, тем с большей уверенностью и точностью можно осущест­влять научный прогноз.

Характерным для современного этапа развития науки является все более широкое применение вероятностных методов во всех ее областях. Это связано с двумя причинами. Во-первых, изучение явлений окружающего мира, становясь более глубоким, требует выявления не только основных закономерностей, но и возможных случайных отклонений от них. Во-вторых, наука все больше вне­дряется в такие области практики, где наличие и большое влияние именно случайности не подлежит сомнению, а иногда даже явля­ется определяющим.

В настоящее время нет практически ни одной области науки, в которой в той или иной степени не применялись бы вероятност­ные методы. В одних науках в силу специфики предмета и истори­ческих условий эти методы находят применение раньше, в дру­гих — позднее.

Знакомство с методами теории вероятностей необходимо сего­дня каждому грамотному менеджеру, и не только ему. На сегодняшний день, нет об­ласти знаний, где не могли бы сказать свое слово эти методы ис­следования.

Задание 1

Налоговая инспекция из общего числа N малых предприятий (x1, x2 ,…, xN ), имеющих учетные номера 1,2,3,…N, для проверки отбирает случайным образом K предприятий, номера которых затем располагает в возрастающем порядке: x1 < x2 <,…,< xk . Вычислить вероятность того, что под номером j в ранжированном ряду будет предприятие с учетным номером L.

Дано: N=60; K=17; J=15; L=52

Найти: Р(А)-?

Решение:

Обозначим событием А то, что под номером 15 в ранжированном ряду окажется предприятие с учетным номером 52.

Так как из общего числа исходов нас интересует число благоприятствующих исходов и поскольку налоговая служба отбирает предприятия для проверки случайным образом, то отборы равновозможны. Поэтому для определения вероятности воспользуемся классическим способом. Воспользуемся элементами комбинаторного анализа и формулой гипергеометрического распределения.

Число благоприятствующих исходов:

Способов выбрать К предприятий из N предприятий:

Ответ:

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 603
Бесплатно скачать Реферат: Сущность теории вероятностей