Реферат: Сущность теории вероятностей
Введение ………………………………………………………..2
Задание №1 …………………………………………………….4
Задание №2 …………………………………………………….5
Задание №3 …………………………………………………….9
Задание №4 …………………………………………………….13
Задание №5 …………………………………………………….14
Задание №6 …………………………………………………….18
Задание №7 …………………………………………………….20
Задание №8 …………………………………………………….23
Задание №9 …………………………………………………….27
Задание №10 …………………………………………………...28
Список использованной литературы ………………………41
Введение
Теорией вероятностей называется математическая наука, изучающая закономерности в случайных явлениях. Ее предметом являются специфические закономерности, наблюдаемые в случайных явлениях.
При научном изучении и описании окружающего мира часто приходится встречаться с особого типа явлениями, которые принято называть случайными. Для них характерна большая по сравнению с другими степень неопределенности, непредсказуемости. Случайное явление — это такое явление, которое при неоднократном воспроизведении одного и того же опыта протекает каждый раз несколько по-иному.
Совершенно очевидно, что в природе нет ни одного явления, в котором не присутствовали бы в той или иной мере элементы случайности. Как бы точно и подробно ни были фиксированы условия опыта, невозможно достигнуть того, чтобы при его повторении результаты полностью и в точности совпадали. Случайные отклонения неизбежно сопутствуют каждому закономерному явлению. Тем не менее в ряде практических задач этими случайными элементами можно пренебречь, рассматривая вместо реального явления его упрощенную схему, «модель», и предполагая, что в данных условиях опыта явление протекает вполне определенным образом. По мере развития науки число учитываемых факторов становится все больше, научный прогноз — все точнее. Это — классическая схема так называемых «точных наук» — от условий опыта к его однозначному результату.
Однако для решения ряда задач такая схема оказывается плохо приспособленной. Это — те задачи, где интересующий нас результат опыта существенно зависит от столь большого числа факторов, что практически невозможно зарегистрировать и учесть их все. В этих задачах многочисленные второстепенные факторы так тесно связаны с результатом опыта, что ничтожное, на первый взгляд, их изменение может сыграть решающую роль, обусловить «успех» или «неуспех» опыта. В таких случаях классическая схема точных наук — детерминистская — оказывается непригодной.
Методы теории вероятностей не отменяют и не упраздняют случайности, непредсказуемости исхода отдельного опыта, но дают возможность предсказать, с каким-то приближением, средний суммарный результат массы однородных случайных явлений. Чем большее количество однородных случайных явлений фигурирует в задаче, тем отчетливее выявляются присущие им специфические законы, тем с большей уверенностью и точностью можно осуществлять научный прогноз.
Характерным для современного этапа развития науки является все более широкое применение вероятностных методов во всех ее областях. Это связано с двумя причинами. Во-первых, изучение явлений окружающего мира, становясь более глубоким, требует выявления не только основных закономерностей, но и возможных случайных отклонений от них. Во-вторых, наука все больше внедряется в такие области практики, где наличие и большое влияние именно случайности не подлежит сомнению, а иногда даже является определяющим.
В настоящее время нет практически ни одной области науки, в которой в той или иной степени не применялись бы вероятностные методы. В одних науках в силу специфики предмета и исторических условий эти методы находят применение раньше, в других — позднее.
Знакомство с методами теории вероятностей необходимо сегодня каждому грамотному менеджеру, и не только ему. На сегодняшний день, нет области знаний, где не могли бы сказать свое слово эти методы исследования.
Задание 1
Налоговая инспекция из общего числа N малых предприятий (x1, x2 ,…, xN ), имеющих учетные номера 1,2,3,…N, для проверки отбирает случайным образом K предприятий, номера которых затем располагает в возрастающем порядке: x1 < x2 <,…,< xk . Вычислить вероятность того, что под номером j в ранжированном ряду будет предприятие с учетным номером L.
Дано: N=60; K=17; J=15; L=52
Найти: Р(А)-?
Решение:
Обозначим событием А то, что под номером 15 в ранжированном ряду окажется предприятие с учетным номером 52.
Так как из общего числа исходов нас интересует число благоприятствующих исходов и поскольку налоговая служба отбирает предприятия для проверки случайным образом, то отборы равновозможны. Поэтому для определения вероятности воспользуемся классическим способом. Воспользуемся элементами комбинаторного анализа и формулой гипергеометрического распределения.
Число благоприятствующих исходов:
Способов выбрать К предприятий из N предприятий:
Ответ:
--> ЧИТАТЬ ПОЛНОСТЬЮ <--